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Abstract

We consider estimating the density of points in a point process by a
count of the number of points in a unit volume, and the bias that results
when the volume is centered at a point of the point process rather than
at a randomly chosen location.

1 Introduction

A common problem in spatial statistics is to estimate the density of points in a
point process. If the process is translation invariant, then its intensity measure
- the expected number of points in a unit volume set - is a multiple of Lebesgue
measure. In this case one seeks a good point estimator of the multiplier µ.

Assuming the point process to be 2 dimensional for the sake of discussion,
a reasonable approach would be to count the number of points in a randomly
chosen unit area. The authors of [1] used this method to estimate the density
of trees in a forest using tree stem counts from a collection of circular plots
that had been chosen to study the environment around sampled trees. Thus
each plot was centered on a tree rather than on a randomly selected point.
Since the resulting density estimate would likely be biased in the direction of
overestimating the true density of trees, particularly if there were a significant
tendency for trees to grow in clumps, it was necessary to estimate and correct
for this bias. It is easy to imagine other scenarios that would lead to the same
issue. For example, one might attempt to estimate the density of stars from old
photographic plates, each of which would naturally have been centered upon
some object of interest.

If we assume trees are distributed according to a spatially homogenous Pois-
son point process, then it is not difficult to show [1] that the bias is exactly
1 tree. On the other hand, the Poisson model does not seem to fit the actual
distribution of trees very well. There is a tendency for tree stems to be more
dispersed than they would be in the Poisson model due to competition among
trees.

In section 2 we formulate and prove a result on the bias that generalizes the
Poisson case in a way that may be more realistic for applications. In section 3,
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we obtain upper and lower bounds of a similar form that hold assuming only
translation invariance.

2 A Bias Identity

Let F (the forest) be a large sphere in d-dimensions that contains points (the
trees) distributed according to a random point process. Let N(A) denote the
number of trees in a given set A. Let U be a unit volume sphere centered
at a point chosen at random, uniformly from F , and V a unit volume sphere
centered at a point chosen at random, uniformly from the set of trees in F .
(We will assume the underlying point process is translation invariant with an
intensity measure that is a finite positive multiple µ of Lebesgue measure. Thus,
in particular, the number of trees in the forest is finite with probability one.)

Let ν = EN(V ). We can also calculate ν as the expected value of N(U)
conditioned on the event that there is a tree at the center of U, under any set of
assumptions where this interpretation makes sense, and this is the way it will
be calculated below. Also, since the point process is translation invariant, we
may and do assume that U is the unit volume sphere centered at the origin.

Given that N(U) = n, let X1, X2, . . . , Xn denote the positions of the trees
in U . Marginally, the Xi are uniformly distributed on U , but not generally
independent unless the point process is Poisson. (See, for example, [2] for back-
ground on point processes, and chapter 2 of that reference for an introduction
to Poisson point processes.) As mentioned above, actual tree locations tend not
to be independent. We shall assume that the underlying point process is such
that the joint distribution of the Xi has a density with a continuous version. In
particular, this allows for the conditioning interpretation of ν. Let Bε denote a
small sphere of volume ε centered at the origin. We shall further assume that
there is ε0 > 0 such that for any n and distinct i and j in the range 1 . . . n we
have

Pn(Xi ∈ Bε, Xj ∈ Bε) ≤ Pn(Xi ∈ Bε)Pn(Xj ∈ Bε), ε < ε0. (1)

(Here Pn denotes the conditional probability given {N(U) = n}.) Thus, a pair
of trees is less likely to be found in the same small volume than it would be
assuming the tree locations were independent. We also assume that the distri-
bution of individual tree locations under Pn is uniform. This prohibits examples
such as a random shift of the integer lattice points.

The final assumption we need is that the probability function f of N(U) is
such that N(U) has a finite third moment. Under this, and the other assump-
tions above, we shall now prove the following identity relating means µ and ν,
and the variance σ2 of N(U):

ν = µ+
σ2

µ
. (2)

To see this, first note that for any 0 < ε < ε0 and n ≥ 1 we have
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nε− n2ε2 < Pn

(
n⋃
i=1

{Xi ∈ Bε}

)
≤ nε. (3)

The right hand inequality is obvious. The left-hand inequality follows from
(1) and the inclusion-exclusion formula.

Let A denote the event that at least one tree lies in Bε. Then by Bayes’
formula we have, for any n ≥ 1,

P (N(U) = n|A) =
Pn(A)f(n)∑∞
k=1 Pk(A)f(k)

. (4)

Use the left-hand inequality in (3) in the numerator and the right-hand
inequality in each term of the denominator to obtain the inequality P (N(U) =

n|A) ≥ (n−n2ε)f(n)
µ . Multiply both sides of this inequality by n and sum from

n = 1 to infinity to obtain E(N(U)|A) ≥ EN(U)2

µ − ε
µEN(U)3. Letting ε tend

to zero, we have ν ≥ µ+ σ2

µ . The opposite inequality is proved similarly, using

the left side of (3) in the denominator of (4) and the right side of (3) in the
numerator of (4). This completes the proof of (2).

3 General Upper and Lower Bounds

In this section we retain the notation introduced above, but here it is more
convenient to assume that U and V are unit volume cubes rather than spheres.
Also assume that the forest, F , is a very large cube. Denote by αU the cube
having the same center as U , but α times the side length. Denote by |A| the
Lebesgue measure of a set A.

We assume as before that trees are distributed according to a translation
invariant point process with intensity measure that is a positive finite multiple
of d-dimensional Lebesgue measure, but impose no further assumptions than
these. We shall prove in this setting that

cd

(
µ+

σ2(N( 1
2U))

µ

)
≤ ν ≤ Cd

(
µ+

σ2(N(2U))

µ

)
(5)

holds in the limit as the size of the forest becomes infinite. (Here cd and Cd are
constants depending only on dimension.)

To prove (5), let B be the event that the center of U lies in 1
2V , or equiva-

lently, that the center of V lies in 1
2U . Note that we have

P (B) =
1

2d|F |
, (6)

which can be seen by first conditioning on the location of V . Also, note that B
is independent of N(V ). (On the other hand, B is not independent of N(U),
since the occurrence of B entails having at least one tree in U .)
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Now we have

ν =
E(N(V );B)

P (B)
≤ E(N(2U);B)

P (B)
, (7)

since on the event B we have V ⊆ 2U.
But,

P (B|N(2U)) ≤ P (V is centered in 2U |N(2U)) =
N(2U)

N
, (8)

where N is the number of trees in the forest. Using this in (7) above, we have

ν ≤ EN2(2U)

NP (B)
, (9)

and the right inequality in (5) with Cd = 23d follows, since by (6) we have
NP (B) = 2−dµ. The left inequality in (5), with cd = 2−d, can be proved by a
similar argument: One has 1

2U ⊆ V on the event B, hence

ν ≥
E(N( 1

2U);B)

P (B)
=
E(P (B|N( 1

2U))N( 1
2U))

P (B)
=

EN2( 1
2U)

NP (B)
, (10)

and the rest follows as before.
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