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Abstract. This expository paper obtains the expansion of the period of a
plane pendulum for small amplitudes to second order in the square of the

amplitude, using both time independent and time dependent perturbation

techniques. An appendix outlines the steps needed to supply full mathematical
rigor.

1. Introduction

The pendulum, with its metronomic beat, has measured out countless lives.
Used for centuries to regulate timepieces, it has come to symbolize the steady and
inexorable passage of time. Even early clockmakers, though, recognized that the
pendulum on its own is an imperfect timekeeper, its vibrations speeding up slightly
as their amplitude decreases. Some experimenters, notably Christiaan Huygens,
used carefully designed collars to compensate for this effect. (See [7], especially
chapter 10, for a survey of clockmaking, including the role of the plane pendulum
and its variations.)

Virtually every mechanics text includes the plane pendulum as an example of
a familiar system that can be analyzed, at least approximately, using Newtonian
mechanics. (See, e.g., [11], [6] or [10].) Consider an idealized pendulum that has
a massless string or arm of length l and a bob that is a point mass of size m.
Assume the arm pivots around a fixed frictionless axis that is perpendicular to the
plane of motion and let θ denote the angle at the pivot in that plane, measured
counterclockwise from the vertical to the arm. Assume the weight mg of the bob is
the only1 external force acting. Following [11], if one denotes by T the magnitude
of the tension in the string, then resolving the tension into horizontal and vertical
components and applying Newton’s third law yields the equations of motion

mẍ = −T sin θ and mÿ = T cos θ −mg.

(Here the y axis is vertical in the plane of motion and the origin is placed at the
pivot, so that x = l sin θ.) If we assume the amplitude (maximum value of θ) is
very small, so that θ never varies much from zero, then T has approximately the
constant value mg. Thus the x equation becomes

ẍ + ω2
0x = 0,

1This assumption is violated by clock pendulums, which are subject to a periodic impulse from
the escapement, a ratchet that serves to transmit energy from a spring or falling weight to the

pendulum. It is adjusted so as to compensate for friction.
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where ω0 =
√

g
l . The general solution is, of course, x(t) = A cos ω0t + B sinω0t,

where A and B can be determined from initial conditions. Thus, to this approxi-
mation, the motion is simple harmonic at frequency ν0 = ω0

2π .
In addition to seeking an exact solution when the amplitude is not small, a more

accurate model would treat the pendulum as an extended rigid body and would
account for the effects of friction; still more accurate models might consider elastic
and thermal properties of the materials, etc. (See [8] for a detailed discussion of
how to account for some of these effects in the laboratory.) Even the idealized
problem cannot be solved in closed form, i.e., in terms of elementary functions,
though it is possible to express the exact solution in terms of elliptic integrals. See,
e.g., [12]. It is easy, however, to derive some general features of the motion, such
as that it is strictly periodic in time with a frequency ν that depends on the total
energy (equivalently amplitude,) and approaches ν0 in the low energy limit. This
is most easily seen in the Hamiltonian formulation of the problem. (See, e.g., [4]
for a general introduction to Hamiltonian mechanics.)

Recall that the Hamiltonian, H, is the total energy expressed as a function of
the angle coordinate θ and the angular momentum p. In this case, it reduces to

H(p, θ) =
p2

2ml2
+ mgl(1− cos θ).

The two terms here correspond to kinetic and potential energy, respectively. The
time evolution of the system is governed by Hamilton’s equations:

θ̇ =
∂H

∂p
(p, θ), and ṗ = −∂H

∂θ
(p, θ).

Here dot denotes differentiation with respect to time and the initial values θ(0) = θ0

and p(0) = p0 are given by the angle (θ0) and angular momentum (p0) at time zero.
Assume, for example, that p0 = 0 and 0 < θ0 < π, so that the pendulum is

instantaneously at rest at time zero. The energy is then E = mgl(1− cos θ0). Since
energy is conserved (an easy consequence of Hamilton’s equations,) the pendulum
subsequently can be at rest only when θ = ±θ0. Again, the equations of motion
imply that the motion of the pendulum for small positive times can be described
qualitatively as follows: Both p and θ decrease monotonically, with p reaching a
negative minimum when θ = 0. Thereafter, θ continues to decrease, while p increases
towards zero.

The conclusion2 is that p reaches zero again at some finite time, which we may
designate as 1

2ν . By symmetry, the motion during [ 1
2ν , 1

ν ] is the mirror image, with
the angle and momentum returning to their original values at time 1

ν. Since the
governing equations are first order in time, standard uniqueness results from the
theory of ordinary differential equations now ensure that this initial cycle will repeat
forever with period τ = 1

ν .
Level curves of H in the two-dimensional (p, θ) space (known as phase space) pro-

vide pictures of the possible orbits of a pendulum system. Unbounded orbits occur
when the pendulum has enough energy to swing over the top (E > 2mgl.) Other
orbits are ovoid loops around the origin, with the point representing the values of
p and θ at time t cycling around them. It turns out to be useful and elegant to
reparametrize the level curves so that the system point coordinate moves at uniform

2To be rigorous, one must rule out the (physically unexpected) possibility that p approaches
zero asymptotically. This, and other purely mathematical issues, are discussed in the appendix.
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speed. This variable, named the angle variable, and its companion momentum, the
action variable, form the basis of an elegant formulation of mechanics. We review
this theory in section 2 along with some of the main ideas of the Hamilton-Jacobi
formulation on which it is based.

The simple harmonic oscillator, together with its generalizations to systems with
more degrees of freedom, plays a fundamental role in physics. For example, all
reasonable potentials V whose bowl shapes allow for periodic bound motion can be
viewed as perturbations of the harmonic oscillator potentials. (This is seen from
the Taylor expansion of V .)

Inasmuch as the plane pendulum is a familiar, yet nontrivial, perturbation of
the harmonic oscillator, it is often used in examples illustrating the methods of
perturbation theory. (See, e.g., [4], [6], or [10].) All of these texts show that to first
order in the amplitude θ0 squared,

ν = ν0 −
1
16

ν0θ
2
0,

or give an equivalent result about the period. Thus, pendulums run a bit slower
than expected as the amplitude increases.

Goldstein’s classic text [4], in particular, assigns the working out of the next
higher order correction as an exercise (chapter 11, exercise 5.) This paper merely
represents the author’s own solution of this exercise, fleshed out with enough back-
ground material to make it reasonably self contained.

We were not able to locate in the literature the details of the second order
calculation via standard perturbation techniques. (However, see [3], where the
calculation is done using a method due to Kryloff and Bogoliuboff.) Moreover,
there is at least one subtle trap in the second order calculation that is not present
in the first. For these reasons, it seemed desirable to record a detailed example of
such a calculation.

In section 3 of the paper we present the second order calculation using a time
independent method that Goldstein attributes to von Zeipel. In section 4 we redo
the calculation using time-dependent techniques. Finally, the appendix collects for
easy reference some of the mathematical results that would be needed to make these
calculations rigorous.

2. The Pendulum Problem in Action-Angle Variables

Perturbation theory is applicable when the Hamiltonian H for a system can
be written H = H0 + ε∆H, where ε is a small parameter and the system with
Hamiltonian H0 is integrable in closed form. For the plane pendulum it is most
natural to describe the configuration using the angle θ between the pendulum arm
and the vertical. Recall that the arm itself is massless of length l, and that the bob
is a point mass of size m. The conjugate momentum is then the angular momentum
of the bob, p = ml2θ̇, and the Hamiltonian is

H =
p2

2ml2
+ mgl(1− cos θ) =

p2

2I
+ ω2

0I(1− cos θ).

The constants I = ml2 and ω0 =
√

g
l are introduced both to simplify the

appearance of H and because of their physical significance: I is the moment of
inertia of the pendulum bob about the axis of rotation and ω0 is the limiting value
of the angular frequency (radians/sec) as the amplitude approaches zero.
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By the Maclaurin expansion of the cosine function we may write

(1) H = H0 + θ2
0H1 + θ4

0H2 + o(θ4
0),

where

(2) H0 =
(p2 + ω2

0I2θ2)
2I

,

H1 = −ω2
0Iθ4

24θ2
0

,

and

H2 =
ω2

0Iθ6

720 θ4
0

.

Following [4], we shall take θ0 to be the amplitude the harmonic oscillator with
Hamiltonian H0 would have at whatever value of energy is given. We also use the
mathematician’s “small o” notation, according to which the symbol o(h) represents
a quantity such that o(h)

h tends to zero as h tends to zero. For the purpose of
perturbation analysis it is convenient to replace θ2

0 with a dimensionless parameter
ε that can be varied continuously from 0. At the end we shall set ε = θ2

0 to obtain
results that are physically meaningful for pendulum motion. Accordingly, we shall
study the parametrized family of Hamiltonians given by

H = H0 + εH1 + ε2H2 + . . . .

Let us briefly recall some of the ideas of Hamilton-Jacobi mechanics. We seek
to change variables from (p, θ) to a new pair of canonical variables (J,w) such that
H depends only on J . Canonical means that the form of Hamilton’s equations of
motion is unchanged under the change of variables. It then follows from the fact
that H is independent of w that w is a linear function of time, w = νt + β, where

(3) ν =
∂H

∂J
.

One way to generate canonical changes of variable is via a function Y = Y (J, θ) of
the old spatial coordinate and new momentum known as the generating function
for the transformation. If for such a Y we set ∂Y

∂θ = p, and ∂Y
∂J = w, then provided

only the solution of these equations for one pair of variables or the other is a bona
fide change of variables, it is automatically canonical. This can be seen in various
ways. Here is a sketch of one approach using calculus of variations. Consider the
function

Λ(p, θ, ṗ, θ̇) = pθ̇ −H(p, θ).

This is to be viewed as a function defined on the tangent bundle of the phase space,
i.e., ṗ, θ̇ denote formal variables here. They are not to be found from the ultimate
time dependence of p and θ. The actual system path γ in phase space is a fixed
endpoint extremum of

∫
Λ(γ, γ̇) dt (with obvious abuse of notation,) since the Euler-

Lagrange equations for this variational problem are precisely Hamilton’s equations.
Now if Λ is replaced by Λ− ∂Y

∂θ θ̇ − ∂Y
∂J J̇ , the same path is still an extremum since

the two integrands differ by an exact differential. Since ∂Y
∂J = w and ∂Y

∂θ = p, we
have

Λ− ∂Y

∂θ
θ̇ − ∂Y

∂J
J̇ = −J̇w −K(J,w),
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where K(J,w) = H(p(J,w), θ(J,w)) is the Hamiltonian in terms of the new vari-
ables. Finally, one observes that the Euler-Lagrange equations for the functional
−J̇w−K(J,w) also reduce to Hamilton’s equations in the new variables J and w.

One can also consider generating functions, hence changes of variable, that de-
pend on time. (See Appendix.)

The pair (J,w), called action-angle variables, are particularly convenient for
perturbation theory. There are several approaches to finding expressions for θ
and p in terms of w and J. One general method is to solve the nonlinear partial
differential equation

(4) H(
∂Y

∂θ
, θ) = E

for the generating function Y = Y (J, θ). In equation (4), known as the Hamilton-
Jacobi equation, E is the total energy. It can be expressed in terms of the parameter
θ0 by noting that p = 0 at maximum amplitude. Thus,

(5) E = H0(0, θ0) =
ω2

0I

2
θ2
0 = 2π2ν2

0Iθ2
0.

Here ν0 represents the harmonic oscillator (ε = 0) angular frequency in cycles per
second.

To understand why a solution of the Hamilton-Jacobi equation generates a trans-
formation to coordinates in which H depends only on the canonical momentum J ,
one must examine more carefully the nature of the solution. First note that the
quantity E in (4) serves as a parameter that determines a particular level curve of
the Hamiltonian. Since H does not explicitly depend on J , one may also treat J as
a parameter. There results a parametric family of functions of J and θ, Y (J, θ;E),
which satisfy (4). In perturbation theory, one encounters transformations which, for
small ε, differ very little from the identity. The identity transformation is generated
by θJ (plus an arbitrary constant), which allows us to assume that ∂2Y

∂J∂θ is nonzero,
since it equals one for θJ. (See the appendix for further discussion.) Now define the
coordinate w as w = ∂Y

∂J (J, θ;E). This equation, together with p = ∂Y
∂θ (J, θ;E) and

(4) itself, can be used (in principle) to eliminate E and express the pairs (p, θ) and
(J,w) in terms of each other. As we noted above, assuming this can all be done
successfully, the resulting pair (J,w) is necessarily canonical.

Let K denote the Hamiltonian expressed in terms of J and w3: K(J,w) =
H(p(J,w), θ(J,w)). Since p(J,w) = ∂Y

∂θ (J, θ(J,w)), we have

(6) K(J,w) = H

(
∂Y

∂θ
(J, θ(J,w)), θ(J,w)

)
.

If we fix J and allow θ to vary, then by (4) the values of p assumed by ∂Y
∂θ are such

as to keep (p, θ) on some level curve of H. Noting that in (6) K depends on w only
through θ, it follows that K is, in fact, independent of w.

Hamilton’s equation J̇ = ∂K
∂w = 0 yields that J is dynamically constant, the ac-

tual value being determined by E ( and, ultimately, the initial conditions.) Another
expression for J = J(E) can be found from the general formula ([4], 460-461, )

(7) J =
∮

p dθ,

3That the appropriate Hamiltonian in the new variables may be found this way is due to the

fact that the canonical transformation is independent of time.
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where the integration is over a full cycle of θ, from θ0 to −θ0 and back again. In the
case ε = 0 it is more convenient to take advantage of the freshman physics solution
of the harmonic oscillator equation of motion. To distinguish quantities associated
with Hamiltonian H0 from those associated with H, we shall henceforth attach to
the former a subscript zero.

From (3) and the fact that frequency is independent of amplitude, we obtain

(8) H0(J0) = ν0J0.

(The additive constant of integration is not physically meaningful. We take it to
be zero.) Since w0 is a linear function of time and θ is a simple periodic function
of time, we must clearly have

θ(J0, w0) = A(J0) cos(2πw0 + φ),

for some suitable phase angle φ and amplitude A. It follows that p(J0, w0) is equal
to −2πν0IA sin(2πw0 + φ). By (2),(8), and (5) we have ν0J0 = 2π2ν2

0A2I. Hence,

A = 1
π

√
J0

2ν0I , or

(9) θ =
1
π

√
J0

2ν0I
cos(2πw0 + φ).

(We shall not need the transformation equation for p.) For later reference, here is
the coefficient Hn, of εn in the expansion of H expressed in terms of J0 and w0:

(10) Hn(J0, w0) =
(−1)n21−nJn+1

0 cos2n+2(2πw0 + φ)
π2n(2n + 2)!νn−1

0 Inθ2n
0

.

3. Period Expansion via Time Independent Perturbation

Let J,w (without subscripts) denote the action-angle pair for the true Hamil-
tonian H. Then H is constant on the curves of constant J so there is a function α
of J only such that α(J) = H(J,w), for all w. The true frequency of vibration, ν,
is given by ν = dα

dJ , since w = νt + w(0) satisfies Hamilton’s equation ẇ = dα
dJ . Of

course, ν is a function of J , and J is determined by E, or equivalently θ0.
Assuming α is analytic4 in the perturbation parameter ε, ν can be expanded in

a power series
ν = ν0(1 + α1ε + α2ε

2 + . . . )

with coefficients αi = αi(J). Evaluating at ε = θ2
0 gives

ν = ν0 + ν0α1θ
2
0 + ν0α2θ

4
0 + . . . ,

an expansion that converges when the amplitude is sufficiently small. (We assume
from now on without explicit comment that θ0 is taken sufficiently small.)

The purpose of this section is to derive the explicit numerical values of α1 and
α2. (In principle the same methods can be used to find higher order terms in the
expansion of ν.) These turn out to be α1 = − 1

16 and α2 = − 5
1024 . Following

[4], let Y = Y (ε, J, w0) be a generating function for the canonical transformation
(J0, w0) → (J,w). Assuming Y is analytic,

Y = w0J + εY1(J,w0) + ε2Y2(J,w0) + . . . .

4See the appendix for sketches of proofs of all the analyticity assumptions.
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(Recall that w0J generates the identity transformation.) Here Y1 and Y2 are certain
analytic functions. The Hamilton-Jacobi equation is

H

(
∂Y

∂w0
, w0

)
= α(J).

Since the right side is independent of w, and H is analytic,

(11) α(J) =
1
2π

∫ 2π

0

H(J + ε
∂Y1

∂w0
+ . . . , w0) dw0

=
∞∑

j=0

εj 1
2π

∫ 2π

0

Hj(J + ε
∂Y1

∂w0
+ . . . , w0) dw0.

We must expand the integrands in powers of ε and collect coefficients of ε and ε2

to identify α1 and α2. Using angled brackets to denote averaging the expression
contained inside on w0, and displaying only terms relevant to the coefficients of
interest,

(12) α(J) = 〈H(J,w0)〉+
〈

∂H

∂J
(J,w0)

(
ε
∂Y1

∂w0
+ ε2

∂Y2

∂w0
+ . . .

)〉
+

1
2

〈
∂2H

∂J2

(
ε
∂Y1

∂w0
+ . . .

)2
〉

+ . . . .

Recall that H = ν0J + εH1 + ε2H2 + . . . . Since the leading term here is the only
one that contributes to the last term in (12) at order ε2, the latter term may be
dropped. Differentiating both sides of (12) with respect to J we have

(13) ν(J) =
〈

∂H

∂J

〉
+

〈
∂2H

∂J2

(
ε
∂Y1

∂w0
+ ε2

∂Y2

∂w0
+ . . .

)〉
+〈

∂H

∂J

(
ε

∂2Y1

∂J∂w0
+ ε2

∂2Y2

∂w0∂J
+ . . .

)〉
+ . . . .

Using the expansion of H we have

(14) ν = ν0 + ε

〈
∂H1

∂J
(J,w0)

〉
+ ε2

〈
∂H2

∂J
(J0, w0)

〉
+ ε2

〈
∂2H1

∂J2
(J0, w0)

∂Y1

∂w0
(J0, w0)

〉
+ ε2

〈
∂H1

∂J
(J0, w0)

∂2Y1

∂w0∂J
(J0, w0)

〉
+ o(ε2),

where terms on each line of the display come from the same term of (13).
Note that the second term is evaluated at J , while the subsequent terms are all

evaluated at J0, the value J has when ε = 0. This difference turns out to be quite
important. In the second term of (13) we used that H0 is linear in J , and in the
third that ∂Y1

∂w0
, and indeed ∂Yj

∂w0
for j ≥ 1, have mean zero. This is shown in [4], pp

517-518, along with the derivation of (14), but we also show this for Y1 below.
For the (first order) calculation of α1 we may evaluate ∂H1

∂J in (14) at J = J0.
Using the first of the following three trigonometric averages

(15) 〈cos4〉 =
3
8
, 〈cos6〉 =

5
16

, and 〈cos8〉 =
35
128
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we find that 〈
∂H1

∂J
(J0, w0)

〉
= − 3J0

96π2Iθ2
0

.

But J0 = 2π2Iν0θ
2
0 (see (5) and (8),) so the above reduces to − ν0

16 . Thus,

(16) α1 = − 1
16

.

The fact that Y1 has mean zero is a consequence of a general property of the
angle variables w0 and w: if J0 is held fixed and w0 increases by 1, then w also
increases by 1; vice versa, if J is held fixed and w increases by 1, then w0 increases
by 1. This follows from (7) with p and θ replaced by J0 and w0. At constant J0,
let ∆w denote the change in w when w0 increases from some value a to a+1. Then

(17) ∆w =
∫ a+1

a

∂w

∂w0
dw0 =

∫ a+1

a

∂2Y

∂J∂w0
dw0 =∫ a+1

a

∂J0

∂J
dw0 =

∂

∂J

∫ a+1

a

J0 dw0.

A similar calculation involving the original form of (7) shows that the range
[a, a + 1] describes exactly one full period of motion, so

∫ a+1

a
J0 dw0 = J. Hence

∆w = 1. Recalling that brackets denote an average over one full cycle of w0, we
have shown that ∂

∂J 〈
∂Y
∂w0

〉 = 1, so 〈 ∂Y
∂w0

〉 = J + c(ε). Since ∂Y
∂w0

= J0 and J and J0

vanish together, c(ε) = 0. On the other hand,

Y = w0J + εY1(J,w0) + o(ε),

from which it follows immediately that 〈 ∂Y1
∂w0

〉 = 0, the fact needed in the derivation
of (14) above.

Next, we use the fact that ∂Y1
∂w0

has mean zero to find an explicit formula for it.
First, it follows from (12) that

α(J) = ν0J + ε〈H1(J0, w0)〉+ o(ε).

On the other hand,

α(J) = H(J0(J,w), w0(J,w)) = ν0J0 + εH1(J0, w0) + o(ε).

Combining these, we have

ν0J + ε〈H1(J0, w0)〉 = ν0J0 + εH1(J0, w0) + o(ε).

Together with the transformation equation J0 = J + ε ∂Y1
∂w0

+ o(ε) this yields

(18)
∂Y1

∂w0
=
〈H1〉 −H1

ν0
.

Let us turn now to the calculation of α2. In addition to the 3 terms of order ε2

in (14) there is a contribution of

(19) ε

〈
∂2H1

∂J2
(J0, w0)(J − J0)

〉
from the ε term there.

Here it is important to stress the difference between an arbitrary value of J , as
given by the coordinate transformation equation

J = J0 − ε
∂Y1

∂w0
+ o(ε),
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and the physical value J has at the given energy E = J0ν0. It is the latter that is
needed for J − J0 here. Note that we only need this increment to order ε.

For the physical value of J , we have that α(J) equals

(20) H(J0(J,w), w0(J,w)) = ν0J0(J,w) + εH1(J0(J,w), w0(J,w)) + o(ε)

= ν0J0 + εH1(J,w0) + o(ε) = ν0

(
J + ε

∂Y

∂w0

)
+ εH1(J,w0) + o(ε),

which is equal to ν0J+ε〈H1(J,w0)〉+o(ε) using the transformation equation. Thus,
by (10),

(21) α(J) = ν0J −
J2ε

64π2Iθ2
0

+ o(ε) = ν0J −
εν0J

2

32J0
+ o(ε).

On the other hand, α(J) = E, i.e.,

ν0J0 = E = ν0J −
ε

32J0
ν0J

2 + o(ε).

Solving for J yields J − J0 = J0ε
32 + o(ε). Using this and J0 = 2π2Iν0θ

2
0 we obtain

finally the desired estimate of (19):

(22) ε

〈
∂2H1

∂J2

〉
(J − J0) =

(
−2

24π2Iθ2
0

) (
3
8

) (
1
32

)
J0ε

2+o(ε2) = −ν0ε
2

29
+o(ε2).

For all other terms in (14) we may evaluate at J = J0. By (10) and (15) we have

(23) ε2
〈

∂H2

∂J

〉
=

(
3J2

0 ε2

1440π4I2ν0θ4
0

) (
5
16

)
=

1
3× 27

ν0ε
2.

By (18), (10), and (15),

(24) ε2
〈

∂2H1

∂J2

∂Y1

∂w0

〉
=

ε2

ν0

{〈
∂2H1

∂J2

〉
〈H1〉 −

〈
∂2H1

∂J2
H1

〉}
= −

(
2J2

0 ε2

242π4ν0I2θ4
0

) (
17
128

)
= − 17

9× 210
ν0ε

2.

Similarly,

ε2
〈

∂H1

∂J

∂2Y1

∂J∂w0

〉
= − 17

9× 29
ν0ε

2.

Setting ε = θ2
0 and combining all terms,

ν = ν0 −
1
16

ν0θ
2
0 −

5
210

ν0θ
4
0 + o(θ4

0),

i.e., α2 = − 5
210 .

To compare this result with the literature, it is necessary to make two further
adjustments. First, we obtain the corresponding expansion of the period, τ, by
taking reciprocals:

τ = τ0 +
1
16

τ0θ
2
0 +

9
210

τ0θ
4
0 + o(θ4

0),

where τ0 = 1
ν0

.
Secondly, the parameter θ0 is the amplitude of an idealized harmonic oscillator.

To obtain an expansion in powers of the square of the actual amplitude θ, set
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the two expressions for potential energy equal: 1
2ω2

0Iθ2
0 = mgl(1− cos θ), or, since

ω2
0 = g

l and I = ml2,

1
2
θ2
0 = 1− cos(θ) =

1
2
θ2 − 1

24
θ4 + . . . .

Thus,

θ2
0 = θ2 − θ4

12
+ . . . .

Substituting this for θ2
0 above, we obtain finally the desired period expansion to

second order in the actual amplitude θ:

τ = τ0

(
1 +

1
16

θ2 +
11

3072
θ4 + . . .

)
.

4. Period Expansion via Time Dependent Perturbation

We shall assume that the true pendulum motion is time periodic with frequency
ν. (The fact that the motion must be strictly periodic was discussed in the in-
troduction.) The frequency depends on the value of the (constant) action, J . If
we express H in terms of the action-angle pair, then H = H(J), as explained in
section 2. The equation of motion for the angle variable w, w(t) = ∂H

∂J , yields the
solution w(t) = νt + β, where ν = ∂H

∂J and β is the constant of integration. As in
the previous section, we attach subscript 0 to denote analogous quantities for the
harmonic oscillator Hamiltonian, H0.

In time dependent perturbation theory we view the small change in Hamiltonian
from H0 to H as the generator of a slow time variation in the quantities β0 and J0,
which are constant in the unperturbed system. The resultant rate of change in the
phase angle β0 can then be incorporated as a small correction to the unperturbed
frequency.

For the purposes of this perturbation theory it is convenient to “factor out” the
unperturbed motion by writing

w(t) = ν0t + β̂(t),

thus defining a certain function β̂. Clearly β̂’s equation of motion can be written
in terms of a perturbation Hamiltonian, ∆H = H −H0 = εH1 + ε2H2 + . . . , as

(25) ˙̂
β =

∂∆H

∂J
(J, ν0t + β̂), β̂(0) = β.

The notation β̂ will be short-lived, as we shortly consider certain approximate
solutions. While the exact ˙̂

β is constant, the corresponding quantity for the ap-
proximations is not. It is therefore simpler to consider their time averages. In this
section we denote the average with respect to time over one full period ( 1

ν ) using
angled brackets. In this notation the exact result could be written

(26) ν = ν0 + 〈 ˙̂
β〉 = ν0 + ν

∫ 1
ν

0

˙̂
β(s) ds.

Similarly, J − J0 is a time-dependent function Ĵ that satisfies

(27) ˙̂
J = −∂∆H

∂w
(J0 + Ĵ , ν0t + β̂), Ĵ(0) = J − J0.
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Of course differential equations (25) and (27) are coupled since, e.g., the right side
of (25) depends on both β̂ and Ĵ .

Time dependent perturbation theory uses a method of successive approximations
to solve the system (25) and (27) approximately. More precisely, for n ≥ 1 one
defines functions βn and Jn inductively by

βn(t) = βn(0) +
∫ t

0

∂∆H

∂J
(Jn−1(s), ν0s + βn−1(s))) ds,

and

Jn(t) = Jn(0)−
∫ t

0

∂∆H

∂w
(Jn−1(s), ν0s + βn−1(s))) ds.

The constants βn(0) and Jn(0) need to be chosen so that we have convergence
to the physical values at time zero. Standard analytic methods (see appendix)
show that on any compact time interval [0, T ], we then have βn → β̂, a solution
of (25), uniformly provided ε is sufficiently small depending on T ; indeed, if we
choose the constants appropriately, |βn(t)− β̂(t)| ≤ Cεn+1, where C = C(T ). Thus,
for the calculation of ν at order ε2 via (26) it suffices to compute β1 and β2. As
an additional simplification, we may ignore terms in the perturbation Hamiltonian
that are too small to affect the results at a given order of approximation. Thus, β1

may be computed using only the first term in ∆H, β2 using only the first 2 terms,
and so on.

It is important to bear in mind that β1, β2, . . . , do not represent the physical
motion of any system. For example, the explicit form of β2 given below shows
that it is, in general, a quasi-periodic function, containing periodic components
with incommensurate frequencies for most values of ε. Since such functions have no
identifiable finite period, one might consider, erroneously, the long-time or ergodic
average

lim
T→∞

1
T

∫ T

0

β̇2(s) ds.

This has, however, a quite different value from the average 〈β̇2〉 due to cancellation
effects. Indeed, one should not expect good agreement since β2 only approximates
β̂ well over short time intervals.

Now β̇1 = ε∂H1
∂J (J0, β0 + ν0t) + o(ε), so to first order in ε we have (see (10))

〈β̇1〉 = − J0ε

12π2Iθ2
0

〈cos4 2π(ν0t + β0)〉.

(It is helpful to recall that J0 = 2π2Iν0θ
2
0.) (Here, and in the rest of this section,

one should interpret the o(ε) and similar estimates as holding uniformly over some
fixed compact time interval containing [0, 1

ν ].) Noting that

(28) 〈cos4 2π(ν0t + β0)〉 = ν

∫ 1
ν

0

cos4 2π(ν0t + β0) dt

= ν0

∫ 1
ν0

0

cos4 2π(ν0t + β0) dt + o(1),

we obtain 〈β̇1〉 = −ν0ε
16 + o(ε), in agreement with the results of section 3.
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For the calculation of 〈β̇2〉 we need the explicit formulas for β1(t) and J1(t).
They are

(29) β1(t) = β1(0)− 1
6
ν0ε

∫ t

0

cos4 2π(ν0s + β0) ds,

and

(30) J1(t) = J1(0)− 1
3

J2
0 ε

πIθ2
0

∫ t

0

cos3 2π(ν0s + β0) sin 2π(ν0s + β0) ds

= J1(0) +
J0ε

12
cos4 2π(ν0t + β0).

We obtain β2 by integrating

β̇2 = ε
∂H1

∂J
(J1(t), ν0t + β1(t)) + ε2

∂H2

∂J
(J0, ν0t + β0).

The equation of motion does not determine the constant terms J1(0) and β1(0).
This subtlety arose already in the previous section when we needed to determine
the physical value of J to order ε. We found there that J = J0(1 + ε

32 ) + o(ε). The
solution consistent with 〈J̇〉 = J0(1 + ε

32 ) + o(ε) is

J1 = J0

(
1 +

ε

32
+

1
12

ε

[
cos4 2π(ν0t + β0)−

3
8

])
.

The actual value of β1(0) is irrelevant to the time averages we wish to compute,
and depends, ultimately, on the position of the pendulum at time zero. Let us
merely assume the time origin has been chosen in such a way that we can continue
to designate β1(0) as β0.

By formula (10) for H1 and (29), the H1 contribution to β̇2 is

(31) − εν0

6

(
1 +

ε

32
+

1
12

ε(cos4 2π(ν0t + β0)−
3
8
)
)

cos4[2π(ν1t + β0

− ε

48π
sin 2π(2ν0t + 2β0)−

ε

384π
sin 2π(4ν0t + 4β0)] + o(ε2),

where ν1 = ν0− 1
16εν0. The contribution of H2 is the same as in the time independent

approach - a spatial average being replaced by a time average. Expanding cos4

around 2π(ν1t + β0) and retaining only the first order terms produces (see (23)
above,)

(32) 〈β̇2〉 = − 1
16

ν0ε + ε2ν0{
1

3× 27
− 1

3× 64
〈cos4 2π(ν1t + β0)〉

− 1
36
〈cos3 2π(ν1t + β0) sin 2π(ν1t + β0) sin 2π(2ν0t + 2β0)〉

− 1
288

〈cos3 2π(ν1t + β0) sin 2π(ν1t + β0) sin 2π(4ν0t + 4β0)〉−

1
72

[〈cos4 2π(ν0t + β0) cos4 2π(ν0t + β0)〉 −
3
8
〈cos4 2π(ν1t + β0)〉]}+ o(ε2).

The frequency difference ν0−ν1 is of order ε, and so it can be ignored at order ε2.
Setting ν1 = ν0 and using the double angle formula and (15), a calculation shows
that the expression in brackets equals

1
3× 27

− 1
29
− 1

9× 25
− 1

9× 29
− 17

9× 210
= − 5

210
,
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in agreement with the result of section 2.

5. Appendix

In this section we discuss some mathematical issues that arose in the main text
of the article and attempt to point the reader toward results in the literature that
can be used to make all of the arguments mathematically rigorous.

A rigorous proof, based on the equations of motion alone, that the pendulum’s
motion is strictly periodic in time must include showing that it will reach the
maximum angle allowed by conservation of energy in finite time. More precisely, if
the initial angular momentum and angle are p0 > 0 and 0 respectively, with p2

0
2ml2 <

2mgl, then p(t) = 0 at some t > 0. To see this, note that Hamilton’s equations
are ṗ = −mgl sin θ, and θ̇ = p

ml2 . If the claimed behavior did not hold, the second
equation would force θ to increase monotonically to some limiting value θ∞ ≤ ∞.
Energy conservation would then imply that θ∞ < π. But then the equation for ṗ
forces p to −∞. (Note that if the initial momentum is such that the kinetic energy
is exactly 2mgl the pendulum will approach the state of perfect balance in the
vertical position, but this will take infinite time.)

We used several times implicitly the fact that the generating function, W , of the
canonical transformation from the original pair of variables, p and θ, to the action-
angle pair J,w is analytic in a neighborhood of 0. This generating function, called
Hamilton’s characteristic function, is closely tied to another generating function,
S, known as Hamilton’s principal function, which governs a transformation to a set
of variables which are both constant in time. (Recall that J , the action variable, is
constant, but w increases linearly with time. In the latter canonical transformation
w is replaced by its value at time zero, i.e., the initial phase angle.)

Let us consider more generally a Hamiltonian H(x, y) that does not depend
explicitly on time and which is analytic in both variables near the origin. We begin
by showing that S is also analytic near the origin. The idea is to construct S
formally from a parametric family of solutions of the equations of motion.

Since H is analytic, there is an analytic Hamiltonian flow in a neighborhood of
the origin, i.e., there is a function F : C3 → C2 which is analytic in a suitable
neighborhood of the origin in C3 (and real for real values of its variables,) such
that (x(t), y(t)) = F (ξ, η, t) satisfy Hamilton’s equations with initial conditions
x(0) = ξ, y(0) = η. Moreover, the transformation (x, y, t) → (ξ, η, t) is canonical
and has generating function S = S(x, η, t) that satisfies y = ∂S

∂x , ξ = ∂S
∂η , and the

Hamilton-Jacobi equation

(33)
∂S

∂t
= −H(x,

∂S

∂x
).

(See section 4 of [9] for a proof of the analyticity of F in the time variable. For
analyticity in the parameters ξ and η see, e.g., [2], equation 21 on page 120. For
the remaining facts, see sections 2 and 3 of [9].)

These results hold on a possibly smaller neighborhood where ∂x
∂ξ 6= 0. Since ∂x

∂ξ

is identically equal to 1 when t = 0, such a neighborhood exists, and one may solve
for ξ as ξ = ξ(x, η, t) by the implicit function theorem. (See e.g. [5], Theorem 2.1.2,
for the requisite analytic version of the implicit function theorem.) Since y = ∂S

∂x ,
we have

∂S

∂x
(x, η, t) = y(ξ, η, t) = y(ξ(x, η), η, t),
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showing that ∂S
∂x is analytic in a neighborhood of the origin. Finally, S(x, η, 0) =

c + xη, a generator of the identity transformation, from which

S(x, η, t) = c + xη +
∫ t

0

∂S

∂s
(x, η, s) ds.

This, together with (33) and the foregoing, yields the desired analyticity of S.
In the case of the pendulum Hamiltonian, it follows from (33) that S is also

analytic in the expansion parameter ε. Let us continue to denote by (ξ, η) the
canonical variables that arise in the dynamical solution (p, θ, t) → (η, ξ, t) of the
pendulum equations of motion.

Next we establish that the frequency, ν, (hence also the period τ ,) is an analytic
function of ε and the initial conditions ξ and η. Since x(t) is a continuous periodic
function it has a Fourier expansion

x(t) =
∞∑

j=−∞
aje

2πijνt

with coefficients aj = aj(ξ, η, ε). The Hamiltonian flow argument can be used in a
neighborhood of any t, so x is actually analytic in a neighborhood of the entire real
t axis. It follows that the coefficients are analytic and tend to zero exponentially
fast as j → ±∞. (See, e.g., [1], pp. 80-81.) The desired analyticity of ν then
follows, for example, from the expression

ν =
ẋ(0)

2πi
∑

j 6=0 jaj
.

Next, by (7) we have

J =
∫ τ

0

p(t)θ̇(t) dt,

so that the action, J , is also analytic. The Hamiltonian expressed in terms of J and
ε alone, α(J, ε), is then easily seen to be analytic in J and ε; the frequency ν = ∂α

∂J
is analytic in J also.

Consider the function W (J, θ) = S(J, θ, t)+α(J, ε)t, where S is Hamilton’s prin-
cipal function constructed above. Then W is an analytic function of J, θ, and ε, and
since S satisfies the Hamilton-Jacobi equation (33) it follows that W satisfies the
Hamilton-Jacobi equation (4) and generates the canonical coodinate transformation
from (p, θ) to the action-angle pair (J,w). That is, W is Hamilton’s characteristic
function. Since the angle variable w = ∂W

∂J , we have that the sets of coordinates
(p, θ, t), (η, ξ, t) and (J,w, t) are analytic functions of each other and ε in a suitable
neighborhood of the origin. To these we may add (J0, w0, t) (independent of ε,)
since we have given their explicit transformation equations with (p, θ, t) above.

Finally, consider the generator, Y , of (J0, w0, t) → (J,w, t). Since w = ∂Y
∂J and

J0 = ∂Y
∂w0

, the partials of Y are analytic because the coordinate changes are. Thus Y

itself is analytic. (The coordinate transformations determine Y up to an additive
function of time only. The fact that we have chosen to use a new Hamiltonian
that does not depend on time further limits the indeterminacy of Y to an additive
constant. This remaining indeterminacy is irreducible and can be traced to the fact
that the Hamiltonian itself is indeterminate up to an additive constant.)

Aside from the these analyticity issues, the only other obvious mathematical faux
pas in section 3 were differentiations under integral signs and interchanges amongst
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various integrations, summations, and differentiations. These can all easily be
justified using analyticity of the various integrands.

The only real issue in section 4 was the convergence of the iterative scheme5

for solving the equations of motion. Since ∆H is nicely Lipschitz in its argument,
virtually any text on ordinary differential equations should contain adequate results.
For example, see [2], Theorem 6, pp 112-115.
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