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Abstract

A thought experiment involving elementary physics shows that it is possible, in principle, to extract a
large amount of energy from the eccentricity of the moon’s orbit. Could it be done in practise? Probably
not.

1 Introduction

There is an enormous potential source of energy represented by the non-zero value of the eccentricity of the
moon’s orbit. Currently, that eccentricity is about 0.05, meaning that, roughly speaking, the moon’s orbit is
5% “out of round”. A perfectly circular orbit having the same angular momentum would be a lower energy
orbit. The difference in energy amounts to approximately 7.318× 1023 Joules. (See the following section for
the calculation of this estimate.) For purposes of comparison, the entire world energy consumption in 2008
has been estimated [7] at approximately 4.74× 1020 J.

Imagine that the earth were tethered to the moon with a band made of some very strong elastic material.
(It is sufficient to imagine a rubber band.) The end of the rubber band attached to the moon could be fixed
in place, since the moon’s rotation period is synchronized with its period of revolution around the earth.
The end attached to the earth, unfortunately, would have to slip in order to allow for the earth to rotate
under it each day. This obviously would considerably complicate the engineering difficulties1, but need not
deter us in a thought experiment. Let us assume the difficulties could be overcome.

Since the distance from the moon to the earth varies during each orbit due to the orbital eccentricity, the
rubber band would periodically stretch and contract. The elastic forces from the rubber band exert no torque
on the earth-moon system, since they are directed through its center of mass, and therefore the addition of
the rubber band could not change the angular momentum of the orbit. If the band were perfectly elastic,
the energy of the orbit would remain unchanged too, but frictional losses in a real (imperfectly elastic) band
would gradually circularize the orbit. The heat produced by these frictional losses could conceivably be
harvested for generating electricity.

Of course, constructing the quarter million mile band of rubber or any other artificial material needed to
reach the moon would be a daunting engineering task, not to mention attaching the band at either end in
the appropriate way. On the other hand, there has already been speculation about building tethers from the
surface of the earth to satellites in geosynchronous orbits (22,000 miles.) Arthur C. Clarke [1], for example,
envisioned such a tether connecting the earth to a permanent space station, built in the 22nd century.
Would-be astronauts simply ride an elevator. (A stairway is provided for the fitness-minded.)

2 The Calculation

Since we are only interested in a rough estimate, we shall ignore the effect of the sun and other planets and
assume the moon orbits the earth in a fixed elliptical orbit with eccentricity e. The total energy, h, of this

1Engineers on Pluto attempting to tether Charon, the major moon of Pluto, would not face this difficulty: the rotation
periods of both Pluto and Charon exactly match their period of revolution.
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orbit is to be compared with the energy h0 of a circular orbit having the same angular momentum, l.
Let a be the earth-moon distance at perigee, and let v be the velocity of the moon (relative to a coordinate

system fixed at the center of the earth) at perigee. Since the velocity is perpendicular to the radius vector
at that instant, we have l2 = m2v2a2. Here m denotes the mass of the moon, and the square of a vector
quantity is to be understood as the squared magnitude. It follows that the kinetic energy of the moon at

perigee is l2

2ma2 . At the same instant, the potential energy of the moon is −mk
a , where k = Gme, me is the

mass of the earth, and G is the universal gravitational constant. Thus,

(2.1) h = −mk
a

+
l2

2ma2
.

Let a0 be the radius of the circular orbit with the same angular momentum, l. Then, by the same
reasoning

(2.2) h0 = −mk
a0

+
l2

2ma20
.

To estimate h− h0, we use a standard formula for eccentricity:

(2.3) e =

√
1− l2

m2ka
.

See, for example, [5], p. 97, formula 3.62. (Comparison with [5] formula 3.49 for the inverse square force law
shows that the k of formula 3.62 needs to be replaced by mk to conform with our notation.)

Replacing e with zero in (2.3) shows that l2

m2ka0
= 1, hence e2 = l2

m2k ( 1
a0
− 1

a ). Again from (2.3),
l2

m2k = (1− e2)a, so

(2.4)
1

a0
− 1

a
=

e2

(1− e2)a
.

Subtracting (2.2) from (2.1) and using (2.4), we have

h− h0 = mk

(
1

a0
− 1

a

)
− l2

2m

(
1

a20
− 1

a2

)
= mke2

(
1

(1− e2)a
− 1

2a0
− 1

2a

)
.

Since the eccentricity of the moon’s orbit is small, we may approximate a0 by a, obtaining finally the
approximate result

h− h0 ≈
mke4

a
.

The following values come from the NASA moon fact sheet [4]:

• k = 3.986× 1014 N −m2/kg

• m = 7.342× 1022 kg

• a = 3.633× 108 m

• e = 0.0549.

Substituting these values yields the estimate of h− h0 announced in the introduction: 7.318× 1023J.
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3 Appendix

After completing this note it occurred to us that a more practical scheme for extracting energy from the
lunar orbit would be to have a tether with one end fixed at the Moon and the other end attached to a heavy
object that is dragged through the earth’s atmosphere. (Due to the non-zero eccentricity of the Moon’s
orbit, contact with the atmosphere - at least in the beginning - would have to be intermittent in order to
avoid unpleasant collisions with the surface of the earth.) While in contact with the atmosphere, the heavy
object would be subject to a wind of approximately 1000 miles per hour. If it were, say, a wind turbine,
and the tether were made of a conducting material, energy generated by the turbine could be sent up to the
Moon, where it might power a lunar civilization. Some of the energy could also be sent back to the earth by
various methods.

During the extraction process the total angular momentum of the earth-moon system would be constant,
but the total energy would decrease as it was used by humans, and ultimately radiated into space as waste
heat. The drag on the atmosphere by the turbine would clearly work toward slowing the rotation of the earth,
and reciprocally, would have the same effect on the rotation of the moon. Assuming the moon’s rotation
period remained tidally locked to its period of revolution around the earth, the Moon would necessarily move
into higher (more distant) orbits, ones having a longer orbital period. Thus, the human energy grab would
hasten the well-known recession of the moon due to its tidal interaction with the earth.

Eventually the earth-moon system would reach a state of double tidal lock, similar to the Pluto-Charon
system, with the month and day equal in length, and the Moon in a geosynchronous orbit. At that point,
energy extraction would grind to a halt, and the heavy object would hang uselessly in the atmosphere.

To estimate the total amount of energy that could be extracted by this method, we first need to find the
radius a of a circular geosynchronous orbit for which the total angular momentum of the earth-moon system
is equal to the present total angular momentum, l. We have

l = (Im + Ie +ma2)ω

where Im and Ie denote, respectively, the moments of inertia of the Moon and the Earth, m is the mass
of the Moon, and ω is the common angular velocity of the Earth and Moon’s rotation, and of the Moon’s
revolution about the Earth. Using Kepler’s 3rd Law for the common period of rotation τ ,

τ =
2π

ω
=

2π√
k
a

3
2 ,

one finds that a is the solution of the quartic equation

l2a3 = k(Im + Ie +ma2)2.

According to [6], the Earth’s moment of inertia about its polar axis is Ie = 8.034 × 1037 kg − m2, while,

according to [4], Im = 1.191 mr2

MR2 Ie, where R and M are the radius and mass of the Earth, and r and m are
the radius and mass of the Moon. Using the values m

M = 0.0123 and r
R = 0.2727, also from [4], we find that

Im = 8.752× 1034 kg −m2.
To make the size of the numbers more manageable, we use the current value of the semi-major axis of

the moon (382,868 kilometers) as distance unit, the current length of a day as the time unit, and the mass
of the moon as the mass unit. With this choice of units, we have Ie = .007458, Im = 0.000008, k = .0528869,
and l = 0.2768. The equation satisfied by final semi-major axis of the moon’s orbit is then

a3 = (0.690085)(0.007467 + a2)2.

The solution is a = 1.4387. In other words, the moon’s orbit will ultimately grow by about 44%. The length
of the day on Earth will then equal the length of the month, measured in current days at 47.15 days.

We can easily compute the difference in energy between the current earth-moon system and it’s energy
in the doubly tidal locked orbit. Equation (2.2) can be used to find the energy in the orbit itself. One then
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also includes the rotational energy of the earth and moon by including terms 1
2Ieω

2
e + 1

2Imω
2
m, where ωe and

ωm are the present day angular speeds of rotation of the Earth and Moon respectively.
The current energy in the lunar orbit turns out to be −0.011834 and the total energy of the earth-moon

system to be 0.135390. The total energy at the time of double tidal lock is −0.017507. The energy difference
of 0.152896 is equal to approximately 2.2× 1029 Joules.

It is curious to note that, at the present time, the total energy of the earth-moon system is positive.
This shows that there is enough energy in the spin of the Earth to completely eject the Moon from its orbit
around the Earth, assuming all the energy could be directed to that purpose.

Once the system reaches double tidal lock, the total energy will have become negative. There is no longer
enough energy to eject the Moon.

It must be recalled that mankind would be competing for energy with natural dissipation of energy by
tidal heating of the earth’s crust and other factors such as the effects of decreasing eccentricity of the Earth’s
orbit. The more quickly energy could be generated by our hypothetical wind turbine, the larger would be
mankind’s ultimate share of the total.

To get a rough estimate of the peak power that could be generated by a turbine, we would need to know
its efficiency and cross-sectional area, A. It seems probable that a civilization capable of building a tether
from the Earth to the Moon would also be capable of building a very efficient generator, so let us assume an
efficiency of 80%.

As it passes, the turbine briefly accelerates the air it encounters to nearly its own speed relative to the
surface of the earth, in order to spin the blades of the turbine. It leaves behind it a “wake” of air moving
at the same speed, but this wake would quickly interact with the surrounding atmosphere and return to
approximately a state of rest with respect to the surface of the Earth by the next time the turbine came
around. (This interaction with the rest of the atmosphere is precisely the way the turbine puts the brakes
on the Earth’s rotation.) In the course of the day, the volume of air encountered is approximately 2πRA.
This figure must be multiplied by the mass density of air, by the square of the relative velocity, and by the
efficiency in order to obtain an estimate of the energy that might be generated in one day.

Air has a density of 1.204 kg/m3 at 20 degrees Celsius and 760mm Hg. See [2], F10. According to
[3], E88, the radius of the Earth is 6378140 m, so the mass of air displaced in a day by the turbine is
4.825 × 107A kg. The Earth rotates at a speed of 1669.68 km/hr, or 463.8 m/sec. This makes the kinetic
energy generated in a day equal to 5.19 × 1012A Joules, or 4.15 × 1012A Joules at 80% efficiency. If the
turbine had a radius of one mile, the area A would be approximately 108 square meters, resulting in a daily
energy production that is similar to current global energy consumption in a year.

Clearly our treatment is highly simplified and there are many physical and engineering issues that have
not been addressed. For example, what properties would the tether material need to have, and is it even
conceivable such materials might exist? Would the tethered turbine tend to swing like a pendulum, and if
so, how would this influence the practicality of the scheme? What would be the environmental impacts of
dragging an object 2 miles wide through the atmosphere? Students of physics and engineering might enjoy
considering these and related questions.
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