
The Expected Time to Find a String in a

Random Binary Sequence

Terry R. McConnell
Syracuse University

January 29, 2001

1 Introduction

The proverbial monkey typing at random will, given sufficient time, produce the
complete works of Shakespeare (along with near misses, good tries, and reams
of outright garbage.) How long might this be expected to take? At the risk of
being overly reductive, the works of Shakespeare can be viewed as one particular
long string of characters. So, more generally, exactly how long is the expected
waiting time for a given string to appear in a stream of random characters?

The first definitive answer seems to have been given by P.T. Nielsen [11],
and rediscovered about 10 years later by G. Blom [2]. Given that the question
is interesting and can be solved by relatively elementary means, one suspects
that the solution has been rediscovered many times since Nielsen’s paper (and
possibly before.) Indeed, the author of one intermediate probability text (see
[12, pp 186-187]) discusses the problem, and even hints at its general solution,
without providing a reference.

In this paper we describe an algorithm for computing the expected time until
the first appearance of a given string in random data, and also discuss some
related problems. There is little that is new in the arguments we give – they
are, for the most part, adapted from the ones given in the papers cited above.
We also discuss the connection with some important problems in computation,
such as searching efficiently for a given string in arbitrary but non-random text.
To focus the ideas we shall confine our attention to the alphabet of binary
digits, but all results can be generalized easily to the case of an arbitrary finite
alphabet.

2 Expected Waiting Times

Consider the problem of finding the first ‘011’ in a stream of random binary
digits, or, equivalently, the first time a ‘tails’ is followed by two ‘heads’ in a
sequence of fair coin-tosses. A simple procedure would run as follows: toss the
coin 3 times and see whether the tosses produced 011; if not, toss the coin

1

another 3 times, and repeat until one of the three toss trials yields the desired
sequence. Each such trial has probability 1

8 of succeeding, and each trial is
independent of the others. It follows that the number of trials, N , until the first
successful one has a geometric distribution,

P (N = j) =
(

1
8

)(
7
8

)j−1

,

hence the expected value of N is 8.
Unfortunately, this simple analysis is not correct for the original problem.

Suppose, for example, the first trial produced 010. This is a failure, but it is now
possible that the target sequence can be obtained after the next two tosses (if
they are 11). In other words, since success can sometimes occur before the end
of a complete trial, trials are not independent. It easy to see that this argument
does yield an upper bound of 24, the extra factor of three occurring because
each trial requires 3 digits. In fact, as we shall see below, 8 is the correct result
for this string, but there are other target strings (111, e.g.) for which 8 is not
correct. The complete story has to do with the internal structure of the target
string.

To state and prove a precise result, it is necessary to introduce some notation.
Let b1, b2, . . . be a sequence of i.i.d. Bernoulli digits, i.e, each bi takes only the
values 0 and 1 with equal probability. If σ denotes a fixed finite sequence of
binary digits, let Xn denote the Markov chain whose initial state is σ and whose
successive states are obtained by adding the next binary digit on the right and
dropping the leftmost digit. (Thus the state space of Xn comprises all finite
binary sequences of length |σ| = n.)

If τ is a binary sequence of length n− 1 and x is any binary digit, then the
transition matrix

Pxτ,σ =
1
2

if either σ = τ0 or σ = τ1, and is 0 in all other cases. Thus, the transition matrix
is doubly stochastic. It is well known that this implies a uniform stationary
distribution, and hence we have

Eσ Tσ = 2n, (1)

where Tσ denotes the time Xn first returns to σ.
After these preliminary observations, it is now easy to prove the following

theorem:

Theorem: Let τ be a binary string of length n and let Tτ be the least j
such that τ occurs in b1b2 . . . bj . Let σ be the longest proper suffix of τ that is
also a prefix of τ . Then

E Tτ = E Tσ + 2n.

If τ has no proper suffix which is also a prefix, then we interpret σ as the empty
string and the first term on the right-hand side as zero.

2

Proof: First suppose σ is non-empty. Let ν1, ν2, . . . be the successive times
that σ occurs in b1, b2, (We say that σ occurs at time t if bt−k+1bt−k+2 . . . bt =
σ, where k = |σ|.) Let

Yj =

{
1, if τ occurs during νj + 1 . . . νj+1

0, else.

Let d1, d2, . . . , dl be the digits that follow σ in τ. Then Yj = 1 if and only if
bνj+1 = d1, bνj+2 = d2, . . . bνj+l = dl. Thus, by the strong Markov property of
the sequence b1, b2, . . . the Yj are independent and

P (Yj = 1) =
(

1
2

)l
=
(

1
2

)n−|σ|
.

If N is the first j ≥ 1 such that Yj = 1, then N has a geometric distribution
and

EN = 2n−|σ|.

Next, observe that on {Yj = 1} we must have νj+1 = νj + l by the definition
of σ. Thus

Tτ = Tσ +
N∑
j=1

(νj+1 − νj).

The νj+1 − νj are also i.i.d, and by (1) we have E(νj+1 − νj) = 2|σ|. Finally, by
Wald’s first lemma

E

N∑
j=1

(νj+1 − νj) = EN E (ν2 − ν1) = 2n−|σ|2|σ| = 2n,

and the result follows in this case.
Strangely, the case of an empty σ seems to require a completely different

argument. Let us adopt some of Nielsen’s terminology and call a proper suffix
of τ which is also a prefix a bifix of τ. Thus, assume for the rest of the argument
that τ is bifix free. Suppose x is the first digit of τ. Then x is the longest bifix
of τx, so by the result for a nonempty bifix,

E Tτx = E Tx + 2n+1 = 2n+1 + 2. (2)

Denote x′ = 1− x. Then by conditioning on the first digit,

EτTτx = 1 +
1
2
Eτx′Tτx. (3)

But no suffix of τx′ is a prefix of τx, so using (2),

Eτx′Tτx = E Tτx = 2n+1 + 2.

Combining this with (3), we have EτTτx = 2n + 2. Since τ must occur before
τx can occur,

E Tτx = E Tτ + EτTτx = E Tτ + 2 + 2n.

3

Thus, 2n+1 + 2 = E Tτ + 2n + 2, and we conclude that E Tτ = 2n.

With the result of the theorem it is a simple matter to design a recursive
algorithm to compute E Tτ for any given finite string τ. See, e.g., [6] for an im-
plementation in the C programming language. Another approach is based upon
the concept of “failure function” from the theory of lexical analysis. (See, e.g.,
[1 ,exercises 3.26 and 3.27], which in turn are based on a paper of Knuth, Morris
and Pratt [9].) Consider the problem of designing an algorithm to find the first
occurrence of τ in an input stream of binary digits. A common approach is to
build (or simulate) a finite state machine whose states correspond to prefixes
of τ. There is also an initial state, and a terminal state that is entered at the
moment the full string τ is found in the input stream.

For example, suppose τ is 01001. In addition to the starting and termi-
nal states, we would construct 5 additional states corresponding to the strings
0, 01, 010, and 0100. Call these states 1,2,3, and 4, with the initial state being
labeled 0 and the terminal state being labeled 5. When the current state is 3
(corresponding to 010,) and a 0 is received, the new state will be 4 (corresonding
to 0100.) On the other hand, if a 1 is received the new state would be 2 (cor-
responding to 01.) In general, the current state measures the progress towards
constructing the entire target string.

If the states are numbered as described, the failure function, f(n), is the
length of the longest proper suffix of the string labeled by n that is also a prefix
of the target string. (One defines f(n) = 0 if there is no such suffix.) For
example, with the target string as above, we have f(1) = 0, f(2) = 0, f(3) = 1,
and f(4) = 1. Knuth, Morris, and Pratt op. cit. show how to compute the
failure function and use it to implement an efficient search algorithm.

By iterating the result of the theorem, one easily obtains the following ex-
pression for E Tτ in terms of the failure function:

E Tτ = 2n + 2f(n) + 2f(f(n)) + . . . ,

with the sum being continued as long as the exponent remains positive.

3 Variations

A number of authors have considered variations on the problem discussed in the
previous section. Blom and Thorburn [3], e.g, consider the first time any in a
set of target strings is obtained in a stream of random data. The corresponding
deterministic problem, i.e, implementing algorithms to search for keywords in a
stream of data, is obviously important in computer science and there is an ex-
tensive literature. (Compilers of computer languages must be able to recognize
programming language keywords such as while, if, for, etc.) See [1].

E. Karnin [8] considers the first time, τn, that any sequence of a given
length n repeats in random data. Among other results, he finds the asymptotic
behavior of the expected time:

E τn ∼
√
π2n, as n→∞.

4

Karnin points out that this result is closely related to the classical “birthday
problem.” Suppose there are N distinct objects that are sampled one by one
with replacement. How long, on average, until some object is obtained for
the second time? If the objects in question are binary strings of length n,
then N = 2n. When such strings are generated independently, unlike the case
considered above, then the same asymptotic analysis as given in Karnin’s paper
shows that the expected time until the first repeat is asymptotic to

√
π2n−1

as n → ∞. Thus, it takes roughly
√

2 times longer until the first repeat in a
stream of random digits, apparently due to the dependence amongst successive
n-tuples.

There are many interesting issues concerned with the probability that one
string of a given length will occur before another given string of the same length.
See, e.g, [5], which discusses curious non-transitive effects that occur when bet-
tors place wagers on which strings will occur first.

How long does it take, on average, before all strings of a given length have
been observed in the input stream? More generally, how long does it take a
given Markov chain to visit all of its states? If we denote this random time by
T , then it is not difficult to write down an explicit formula for E T using some
elementary facts about Markov chains. Assume the chain is irreducible and has
a finite state space. It is easy to see that

Ei(number of visits to j) = δij + Pij + P 2
ij + . . . (4)

Suppose A is a given collection of states, the initial state, i, does not belong to A,
and we want to find Ei(number of visits to j before reaching A). The previous
formula can be used if we replace all transitions into and out of states in A
with transitions to a new absorbing state, ∆. Its transition matrix Q̃ can be
constructed from P as follows: first construct a matrix Q from P by replacing
all entries in rows and columns corresponding to states in A with zero entries.
Next add a bottom row to Q consisting of all zeros, and finally adjoin a last
column to Q so that the row sums equal 1. (Entries in the new last column
thus correspond to the probabilities of transitions into A for the original chain,
and transitions into ∆ for the new chain.) If j /∈ A the right side of (4) with
P replaced by Q̃ then gives the expected number of visits to j before reaching
A. Moreover, because of the form of Q̃, we can use Q in place of Q̃. Since the
chain is irreducible, states in A will eventually be reached with probability one.
From this, it is easy to show that the series converges and equals (I −Q)−1

ij . To
summarize, we have that

Ei(number of visits to j before reaching A) = (I −Q)−1
ij .

Now suppose that A = {i1, . . . , ik}, that TA denotes the time to reach some
state in A for the first time, and that Tj denotes the time to reach an individual
state j for the first time. Then

TA = Ti1 ∧ Ti2 ∧ · · · ∧ Tik ,

5

where a ∧ b denotes the smaller of numbers a and b. On the other hand, if the
entire state space is S = {i1, . . . , in}, then

T = Ti1 ∨ Ti2 ∨ · · · ∨ Tin ,

where we use the standard notation a∨ b for the larger of the numbers. Finally,
a version of the “inclusion-exclusion formula” gives

Ti1 ∨ · · · ∨ Tin =
n∑
j=1

Tj −
∑
i<j

Ti ∧ Tj

+
∑
i<j<k

Ti ∧ Tj ∧ Tk − · · ·+ (−1)n+1Ti1 ∧ · · · ∧ Tin .

Combining these results, and taking expectations, we arrive at the following
general formula: if i is a particular state and T is the time it takes to visit all
the states, then

Ei T =
n∑
j=1

(−1)j+1
∑

C={i1,...,ij}

∑
k/∈C

(I − PC)−1
ik ,

where the second sum is over distinct subsets C of size j of the state space, and
PC is the matrix obtained from P by replacing with 0 all entries in rows and
columns corresponding to states in C.

To apply this to the problem of finding all binary strings of length n, note
that after the first n digits the resulting string is uniformly distributed on the
set S of all strings σ of length n. By conditioning on the string σ it follows that

E T = n +
1
2n
∑
σ

Eσ T,

where the sum extends over all strings σ of length n. The above formula can
then be applied to calculate each term on the right.

For small values of n these formulas can be used to compute the expected
value exactly (See, e.g, the Maple worksheet [7].) For n = 1, we have E T = 3.
For n = 2, 3, and 4 the values are, respectively, 9.5, 82959

3640 ≈ 22.79 . . . , and

15196470103027446764838236318296131920851968094230950060807620630943693
259180013898712074394595904741652282392543237486671525526056835614400

,

which is approximately equal to 58.63287788. (We reproduce the exact value to
discourage those who might look for a simple formula.)

For larger values of n the formula becomes impractical. For example, with
n = 5 the state space has size 32, and an unsophisticated application of the
above formula would involve inverting some 232 large matrices.

Failing a practical method for calculating E T, one can still ask for the
asymptotic behavior of this quantity as n → ∞. This is closely related to the

6

classical “coupon collector’s problem:” Suppose there are N objects, each of
a different type, and a collector receives one item, selected at random with
replacement, at each unit of time. How long, on average, until the collector
will have obtained at least one of each type of object? It is well known that as
N →∞, the expected time is asymptotic to N log(N). (See, e.g, [4, p. 39].)

We can easily use this result to find an upper bound for E T : Group the
stream of random digits into blocks of length n, and view each such block as
one in a sequence of random samples from the set of binary strings of length n.
Since N = 2n here, we immediatly obtain the asymptotic upper bound that

E T ≤ (log(2) + ε)n22n,

once n is sufficiently large, for any ε > 0.
Of course, this result is quite crude. Indeed, Mori [10] has proved that the

correct rate of growth is exactly the same as for the coupon collector’s problem:

E T ∼ log(2)n2n,

as n→∞. (I thank David Aldous for pointing out this reference.) It is perhaps
surprising that the dependence amongst successive substrings of length n in a
random stream does not affect the result of the coupon collector’s problem, since
it apparently has a significant effect in the case of the birthday problem.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Principles, Techniques,
and Tools, Addison-Wesley, Reading, 1988.

2. G. Blom, On the mean number of random digits until a given sequence
occurs, J. Appl. Prob. 19(1982), 136-143.

3. G. Blom and D. Thorburn, How many random digits are required until
given sequences are obtained? J. Appl. Prob. 19(1982),518-531.

4. Richard Durrett, Probability: Theory and Examples, 2nd Edition, Wadsworth,
Belmont, CA, 1996.

5. M. Gardner, Mathematical games, Scientific American 231(1974), 120-
125.

6. http://barnyard.syr.edu/quickies/cover.c

7. http://barnyard.syr.edu/cover.ma

8. E.D. Karnin, The first repetition of a pattern in a symmetric bernoulli
sequence, J. Appl. Prob. 20 (1983),413-418.

9. D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern matching in strings,
SIAM J. Comput. 6(1977), 323-350.

7

10. T.F. Mori, On the expectation of the maximum waiting time, Ann. Univ.
Sci. Budapest. Sect. Comput. 7(1987), 111-115.

11. P.T. Nielsen, On the expected duration of a search for a fixed pattern in
random data, IEEE Trans. Inform. Theory 19(1973), 702-704.

12. Sheldon M. Ross, Introduction to Probability Models, 7th Edition, Aca-
demic Press, San Diego, 2000.

8

