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Result

In this paper we prove the theorem below and discuss an application to the
Birthday Problem.

Theorem: Let N ≥ 1 and x1, x2, . . . , xN be a sequence of nonnegative real
numbers. Let k ≥ 1 be an integer. Then

1(
N
k

) ∑
1≤i1<i2<···<ik≤N

xi1xi2 . . . xik ≤ (x̄)k, (1)

where x̄ denotes the arithmetic average of the xj . Equality holds if k = 1, and
if and only if all the xj are equal when k > 1.

Proof: We may assume k > 1. Let f(x1, . . . , xN ) be the function defined by
the left hand side of (1). Then f is continuous. Thus, it attains its maximum
on the simplex S defined by

x̄ = 1, xj ≥ 0, j = 1, 2, . . . , N, (2)

at some point y = (y1, . . . , yN ). It suffices to prove that

yj = 1, j = 1, . . . , N. (3)

We shall prove this by contradiction.
Suppose for some fixed pair of indices i 6= j, 1 ≤ i, j ≤ N, we have

yi 6= yj . (4)

Consider the point z with the same components as y except for its i-th and
j-th components. The i-th and j-th components of z are both equal to the
average yi+yj

2 .
Let A be

∑
yi1 . . . yik , where the sum extends over k-tuple indices satisfying

1 ≤ i1 < i2 < · · · < ik ≤ N, with i, j /∈ {i1, . . . , ik}. Let B and C be defined
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similarly, but with k-1-tuples and k-2-tuples respectively. (C is an empty sum
if k = 2. We interpret it then as C = 1.) Then

f(z) = A + B(zi + zj) + Czizj = A + B(yi + yj) + C(
yi + yj

2
)2.

The last expression is strictly greater than A + B(yi + yj) + Cyiyj , by the
Arithmetic-Geometric mean inequality.

Thus, f(z) > f(y), contradicting the fact that the maximum of f on S occurs
at y. This contradiction shows that yi = yj for all pairs of distinct indices i and
j, i.e., the yj are constant. Thus (3) holds, since y satisfies (2).

Finally, the same averaging argument shows that strict inequality holds
whenever the yj are not constant.

Discussion

Inequality (1) has an amusing application to the Birthday Problem. As it is
commonly stated in probability textbooks, the Birthday Problem asks for the
probability that two or more people in a group of k people share a birthday.
Equivalently, what is the complementary probability, P (k), that all k people
have distinct birthdays?

One assumes that there are exactly N = 365 possible birthdays, i.e., leap
years are ignored. Moreover, if Yi denotes the i-th person’s birthday, then the
Yi are assumed to be independent and uniformly distributed on {1, 2, . . . , N}.
Under these assumptions one can show that P (23) < 1

2 . Thus, there are better
than even odds that some pair of people in a group of 23 or more share a
birthday.

It follows from the theorem, however, that uniform distribution is unneces-
sary for this conclusion. Suppose, more generally, that N is not necessarily 365,
and that Y1, Y2, . . . , Yk are independent, indentically distributed, but not neces-
sarily uniformly distributed. Let xj = P (Y1 = j). Then by identical distribution
and independence,

P (k) = k!
∑

1≤i1<···<ik≤N

P (Y1 = i1, . . . , Yk = ik) = k!
∑

1≤i1<···<ik≤N

xi1xi2 . . . xik .

By (1), the latter is bounded above by

k!
(
N

k

)
(x̄)k =

N !
(N − k)!Nk

.

This is the familiar expression from the uniform case [1]. Thus, the probability of
having distinct “birthdays” is maximized if birthdays are uniformly distributed.
See links at [2] for more on the Birthday Problem and its variants.

Case k = 2 of (1) can be deduced easily from the Cauchy-Schwartz inequality
in the form  N∑

j=1

xj

2

≤ N
N∑
j=1

x2
j . (5)
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Indeed, case k = 2 of (1) is equivalent to (5). Thus (1) can also be viewed as a
generalization of (5).

There is no reverse inequality. The right side of (1) cannot be bounded by
any multiple of the left side when k ≥ 2. Take x1 = 1, and the remaining xj
very small. There also does not seem to be a noncommutative extension of the
inequality. An appropriate conjecture would be

(N − k)!
N !

∑
1≤i1 6=i2 6=···6=ik≤N

xi1xi2 . . . xik ≤

 1
N

N∑
j=1

xj

k

,

where x1, . . . , xN are, e.g, nonnegative definite m×m matrices, and B ≤ A for
m ×m matrices means that A − B is nonnegative definite. It is not difficult,
however, to find counterexamples with 2× 2 matrices and N = k = 3. See [3].

Finally, we remark that the following probabilistic consequence holds:

Corollary: Let x1, x2, . . . , xN be independent, mean zero random variables
with finite variances σ2

1 , . . . , σ
2
N . Then

1(
N
k

)E
 ∑

1≤i1<i2<···<ik≤N

xi1xi2 . . . xik

2

≤

 1
N

N∑
j=1

σ2
j

k

.

If k > 1, equality holds if and only if all variances are equal.

This follows from (1) using orthogonality of the terms on the left hand side.
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