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Abstract

We consider some examples of conditionally convergent series.

1 Introduction

Conditionally convergent series are infinite series that converge but do not converge absolutely. Apart from
the Alternating Series Theorem, there are surprisingly few general methods for constructing examples of
conditionally convergent series. In the next section we present a method for constructing examples based
upon a slight extension of the results of [6].

2 Conditionally Convergent Series Examples

Following [6] we shall say that a series
∞∑
j=1

aj

is segmentally alternating if there is a strictly increasing sequence jn with j1 = 1 such that for each n, half the
terms of the segment ajn , ajn+1, . . . ajn+1−1 are positive and half are negative. (This requires that segments
have even length.) If in addition we have |an| ↘ 0 then the series is said to be segmentally alternating of
Leibniz type (SALT). Among other things, the authors of [6] prove that if the segments of a SALT series
have bounded length (i.e, there is k such that jn+1 − jn ≤ k for all n) then the series converges, possibly
conditionally.

We remark first that the Leibniz assumption |an| ↘ 0 can be relaxed to Mn+1 ≤ mn, with Mn tending
to zero, where Mn denotes the maximum |aj | in the nth segment, and mn denotes the minimum. If this is
so, then the terms of each segment can be rearranged to form the terms of a SALT series. The resulting
rearranged series converges by Theorem 1 of [6], and hence the original series converges by Theorem 8.14
of [1]. (I thank Robert Kantrowitz for pointing out references [1], [3], and [4], and for several interesting
discussions.)

A number µ will be called a median of a segment of terms if at least half the terms aj in the segment
satisfy aj ≤ µ and at least half satisfy aj ≥ µ. If the segment has odd length then µ is unique and equal
to the middle term when terms are arranged in increasing order. If the segment has even length then any
number between or equal to one of the two middle terms can be taken as a median.

Theorem 2.1. Let µn be a median of the nth segment of a series
∑∞
j=1 aj. Assume that the series

∞∑
n=1

µn

1



converges if the segments have constant length, and converges absolutely if the segments have non-constant
but bounded length. Also assume that

max{|aj − µn+1| : jn ≤ j < jn+1} ≤ min{|aj − µn| : jn−1 ≤ j < jn}, n = 2, 3, . . .

and that these maxima and minima have limit zero as n tends to infinity. Then
∑∞
j=1 aj converges, possibly

conditionally.

Proof. Let
bj = aj − µn, jn ≤ j < jn+1.

Then, as noted above, the terms bj in each segment can be rearranged to give the terms of a SALT series.
This series converges by Theorem 1 of [6], and then

∑∞
j=1 bj converges by Theorem 8.14 of [1]. Let kn be the

length of the nth segment. Then
∑∞
n=1 knµn converges by the comparison test, since the kn are bounded,

and the desired result follows.
Under the hypotheses of Theorem 1 of [6] one may take all medians equal to zero.
Using Theorem 2.1 we can construct many examples of conditionally convergent series. For example, for

the nth segment introduce numbers λj having 0 as a median and such that

max{|λj | : jn ≤ j < jn+1} ≤ min{|λj | : jn−1 ≤ j < jn}.

These maxima and minima must also tend to zero as n tends to infinity. Define aj = µn+λj for j in the nth
segment. Then if segment lengths are bounded and the series of µn is absolutely convergent, or if segment
lengths are constant and the series of µn is convergent, the series of the aj converges, possibly conditionally.

In the constant segment length case there is the possibility of proceeding recursively by representing the
series of the µn as another such series with its own segment length, and so forth.

Theorem 2.2. Let
∞∑
j=1

λ
(k)
j

be a segmentally alternating series for each k = 0, 1, . . . , with nth segment r
(k)
n ≤ j < r

(k)
n+1 such that

r
(k)
n+1 − r

(k)
n ≤ Rk <∞. Assume that

(2.1) |λ(k)j | ≤ Lk <∞,

for each j. Also assume that for each k the λ
(k)
j tend to zero as j →∞ and satisfy inequalities

max{|λ(k)j | : r
(k)
n ≤ j < r

(k)
n+1} ≤ min{|λ(k)j | : r

(k)
n−1 ≤ j < r(k)n },

and that

(2.2)

∞∑
k=0

RkLk <∞.

Define a sequence aj by

aj =

∞∑
k=0

λ
(k)
j .

Then
∑∞
j=1 aj converges, possibly conditionally.

For the proof, note that, by Theorem 2.1, σk =
∑∞
j=1 λ

(k)
j converges for each fixed k and satisfies

(2.3) |σk| ≤
1

2
RkLk.
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The same upper bound holds for all the partial sums indexed by one of the r
(k)
n . This essentially follows

from Theorem 2 of [6], since terms can be rearranged within segments to form the sequence of terms of a
SALT series without affecting the partial sums in question. (Theorem 2 of [6] requires segments of constant
length, but that assumption is unnecessary for the present conclusion: one can simply pad each segment as
needed to the maximum length by appending terms of alternating sign and equal in absolute value to the
smallest absolute value term in the segment. Again this does not affect the relevant partial sums.)

Lemma 2.1. Suppose the series
∞∑
j=1

λ
(k)
j = σk

converge for every k. Also suppose we have bounds on the maximal partial sums

sup
n

∣∣∣∣∣∣
n∑
j=1

λ
(k)
j

∣∣∣∣∣∣ ≤Mk,

with
∞∑
k=0

Mk <∞.

Let aj =
∑∞
k=0 λ

(k)
j and s =

∑∞
k=0 σk. Then the series

∞∑
j=1

aj

converges to s.

For the proof, given ε > 0, first choose N so large that

∞∑
k=N+1

Mk <
ε

2
.

For any M,

|s−
M∑
j=1

aj | ≤
∞∑
k=0

|σk −
M∑
j=1

λ
(k)
j | < ε+

N∑
k=0

|σk −
M∑
j=1

λ
(k)
j |,

and we finish by taking M sufficiently large.
Returning to the proof of Theorem 2.2, note that we have the bound

(2.4) sup
n

∣∣∣∣∣∣
n∑
j=1

λ
(k)
j

∣∣∣∣∣∣ ≤ RkLk.
To see this, recall that 1

2RkLk is an upper bound for partial sums indexed by n = r
(k)
i , i = 1, 2, . . . by the

remarks following (2.3). For values of n in between, the worst case occurs when all terms of the same sign
occur at the beginning of a segment. Theorem 2.2 then follows from (2.2) and Lemma 2.1.

Example 2.1 ([3], Problem 3.5.9) The alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

3



converges to ln(2). The following rearrangement of the alternating harmonic series converges to exactly half
this value:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . .

Convergence of the series can be seen from Theorem 2.1 after replacing each positive term by two equal terms
and using segments of length 4. To evaluate the sum, group the terms of the original series into segments of
length 3 and note that the general term of the resulting series is given by

1

2n− 1
−
(

1

4n− 2
+

1

4n

)
=

1

2

(
1

2n− 1
− 1

2n

)
.

The following rearrangement of the alternating harmonic series, on the other hand, converges to the same
sum as the alternating harmonic series itself:

1 +
1

3
+

1

5
− 1

2
− 1

4
− 1

6
+

1

7
+

1

9
+

1

11
− . . .

Convergence follows from Theorem 2.1, using segments of length 6. Since partial sums indexed by multiples
of six agree with the corresponding partial sums of the alternating harmonic series, both series have the
same sum.

Example 2.2. The pattern of alternation of sign in the terms of the series of Example 2.1 is periodic.
Here we construct non-periodic examples based upon the Thue-Morse sequence. The Thue-Morse sequence
may be obtained by starting with the finite sequence 01 and then repeatedly applying the substitution that
replaces each 0 with 01, and each 1 with 10. When iterated indefinitely, this substitution produces an infinite
sequence of binary digits that begins 0110100110010110 . . . . (A convenient reference for properties of the
Thue-Morse sequence is [5].)

The binary digits in the construction of the Thue-Morse sequence can be replaced by any other pair of
distinct symbols. If we let 1 play the role of 0 and −1 play the role of 1, then the resulting sequence tn
alternates in sign in a way that is not periodic, but is nevertheless quite balanced with regard to the numbers
of positive versus negative terms. A more direct formula for the nth term of the resulting sequence can be
given in terms of the binary expansion of n: Let b(n) denote the number of 1 digits in the binary expansion
of n. Then tn = (−1)b(n). See, e.g., Proposition 2.2.2 of [5].

Theorem 2.3. Let dn, n = 0, 1, 2, . . . , be a non-decreasing unbounded sequence of positive real numbers.
Then the series

∞∑
n=0

(−1)b(n)
1

dn

converges, possibly conditionally.

For the proof, one only needs to note that the substitution used in the construction of the Thue-Morse
sequence, when applied to segments of symbols 1 and −1, preserves the property of having equal numbers
of positive and negative terms in a segment. Then apply Theorem 1 of [6] with segment length equal to any
power of 2 : 2, 4, 8, . . .

If we use Theorem 2.1 above in place of Theorem 1 of [6], then we may freely permute the 1
dn

in blocks
of length equal to a fixed power of 2, and the resulting series still converge.

It would be of interest to find the exact value of
∞∑
n=0

(−1)b(n)
1

n+ 1
= 0.398761 . . .

Example 2.3. This extended example is motivated by the Fourier series,

∞∑
n=1

sin(2πnα)

n
,
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which converges for all choices of the real number α. The sequence 1
n here can be replaced by any decreasing

sequence with limit zero. Convergence follows from partial summation and the following rather remarkable
property of the sine function: for any fixed real number α there is a finite constant M depending only on α
such that

(2.5)

∣∣∣∣∣∣
n∑
j=1

sin(2πjα)

∣∣∣∣∣∣ ≤M,n = 1, 2, . . .

If α is rational, then the sequence sin(2πjα) is periodic and the sum over a full period is zero. If α is
irrational, then |1− e2πiα| > 0, and (2.5) follows by noting that the series there is the imaginary part of the
sum of the geometric series with terms e2πijα.

Motivated by this result, we may ask whether other functions than the sine function have a similar
property? Let f be a periodic function of period 1. (The choice of period is immaterial, but period 1 is
convenient for the present discussion, since the choice f(x) = sin(2πx) has that period.) For which such
functions f is the sequence

n∑
j=1

f(jα), n = 1, 2, . . .

a bounded sequence for each choice of real number α?
If we assume that f is Lebesgue integrable, then a necessary condition is that f should have mean zero,

i.e., ∫ 1

0

f(x) dx = 0.

This is an immediate consequence of the following well-known and celebrated result:

Theorem 2.4. (Kronecker-Weyl-Birkhoff) If f has period 1 and is Lebesgue integrable over finite intervals,
then

lim
n→∞

1

n

n∑
j=1

f(jα) = µ,

for almost every α, where

µ =

∫ 1

0

f(x) dx.

If f is assumed to be Riemann integrable, then we have convergence for every real number α, and
convergence to µ for every irrational α. (See, e.g., [2], especially example 7.8 and appendix 9.) Accordingly,
we shall say that a Riemann integrable function f having mean zero and period 1 is KWB if (2.5) holds
with f(jα) in place of sin(2πjα).

It follows from (2.5) that any function of the form

f(x) =

n∑
j=1

Aj sin(bjx),

for real numbers Aj , bj , j = 1, 2, . . . , n is KWB.
Consider in place of the sine function the function φ(x) of period 1 defined as +1 for 0 < x < 1

2 , −1 for
1
2 < x < 1, and equal to zero whenever 2x is an integer. As an application of Theorem 2.2 we prove the
following:

Theorem 2.5. Let ck be a sequence of real numbers satisfying

∞∑
k=1

k|ck| <∞,
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and define

f(x) =

∞∑
k=1

ckφ
(x
k

)
.

Then for any α ∈ Q we have

sup
n

∣∣∣∣∣∣
n∑
j=1

f(jα)

∣∣∣∣∣∣ <∞.
By Kronecker’s Lemma, it suffices to show that the series

∞∑
j=1

f(jα)

dj

converges whenever 0 < dj ↗∞. Thus, fix such a sequence dj and α ∈ Q. Let

λ
(k)
j = ck

φ(jα/k)

dj
, k, j ∈ N.

Since α/k is rational, say α/k = p
kq , p, q ∈ Z, the series

∞∑
j=1

λ
(k)
j

is segmentally alternating with segment length bounded by k|q|. Also, we have |λ(k)j | ≤
|ck|
d1
. Since

f(jα)

dj
=
∑
k=1

λ
(k)
j ,

the desired result follows from Theorem 2.2.
We have not been able to determine whether the function φ is KWB, or indeed if there are any examples

of KWB functions besides trigonometric polynomials.

Example 2.4. As another application of Theorem 2.2, we give a proof of the main result of [4].

Theorem 2.6. Let b1 ≥ b2 ≥ . . . be a sequence of real numbers with finite real limit c. Also assume that for
each n ≥ 0 there are real numbers an,j , j = 1, 2, . . . L such that |an,j | ≤M <∞ for all n and j, and

L∑
j=1

an,j = 0.

Then the series
∞∑
n=0

 L∑
j=1

an,jbnL+j


converges absolutely.

Proof: By replacing the bj with bj − c we may assume without loss of generality that bj ↘ 0. Also, we
may assume M = 1. It suffices to prove convergence only, since we are free to change the signs of all the an,j
in a given segment without affecting the hypotheses.

Introduce the signed binary expansions

an,j =

∞∑
k=1

εn,j,k2−k, εn,j,k ∈ {±1}.
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Define

µn,k =

L∑
j=1

εn,j,k,

and
λ
(k)
nL+j = (εn,j,k − µn,k)2−kbnL+j .

The numbers (εn,j,k − µn,k) are each integers in the range {−L − 1, . . . L + 1}, and they sum to zero on j.
Thus, if each term of the series

∞∑
n=0

L∑
j=1

λ
(k)
nL+j

is replaced by |εn,j,k − µn,k| equal terms, the resulting series is segmentally alternating with segment length
bounded by L(L + 1). Moreover, it is easy to see that the hypotheses (2.1) and (2.2) of Theorem 2.2 hold
for the resulting series: we may use Lk = b12−k in (2.1) and Rk = L(L+ 1) in (2.2).

It follows then from Theorem 2.2 that the series

∞∑
n=1

L∑
j=1

∞∑
k=1

(εn,j,k − µn,k)2−kbnL+j =
∞∑
n=1

L∑
j=1

(
an,j −

∞∑
k=1

µn,k2−k

)
bnL+j

converges. But then we are done, since

∞∑
k=1

µn,k2−k =

∞∑
k=1

L∑
j=1

εn,j,k2−k =

L∑
j=1

an,j = 0.
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