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Abstract

We present a simple-minded approach to a variant of simple linear regression that seeks to minimize
the sum of squared distances to a line rather than the sum of squared vertical distances. We also discuss
variants where distances rather than squared distances are summed.

1 Introduction

The Park Service is planning to build a number of shelters at selected scenic locations throughout a large
tract of forest. Since much of the labor in this project involves carrying materials and equipment to each
shelter site from the nearest road, the Service also plans to construct a straight section of supply road that
will minimize the amount of labor involved. How should the road be located?

If we assume labor is proportional to squared distance rather than distance, as is mathematically conve-
nient, then this type of problem is a first cousin of the problem of simple linear regression from elementary
statistics. In simple linear regression one is given a data set in the form of a scatter-plot, a plot depicting
the locations of points in a 2 dimensional Cartesian coordinate system, and one seeks to find the line that
best fits the set of points in the sense that it minimizes the sum of squared vertical distances from the points
to the line. The type of problem where one seeks to minimize the squared distances, as opposed to squared
vertical (or horizontal) distances, will be discussed in this paper. We shall call it orthogonal regression.

Regression problems arise in statistics in two quite different contexts, which we review here briefly.

(I) Measurement Error Models

In problems involving measurement error models, one posits that a linear relationship y = mx+ b holds
between two physical quantities x and y, but the exact relationship is obscured by measurement error when
actual pairs (xi, yi) are observed. A common mathematical model is to suppose that

yi = mxi + b+ εi, i = 1, 2, . . . , n,

where the measurement errors εi are assumed to be independent and normally distributed with mean zero,
and either known or unknown variance σ2. The problem is to infer the values of the model parameters –
m, b, and perhaps σ2 – from the observed data. The maximum likelihood estimators of m and b are obtained
as the slope and y-intercept of the least squares (vertical) regression line described above.

In actual collection of data, the xi are often selected by the experimenter and then corresponding yi are
observed. In this context it is natural to think of x as the “independent variable” and y as the “dependent
variable”, but the underlying mathematical model is symmetric in x and y. If we switch to y as the
independent variable then the analogous statistical procedure could be termed horizontal regression: it would
determine the line that minimizes the sum of squared horizontal distances to points in the scatter-plot.

Horizontal and vertical regression generally give different solutions, which might be regarded as a jarring
asymmetry in light of the symmetry of the underlying model.
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(II) Bivariate Normal Parameter Estimation

Recall that the bivariate normal distributions govern the joint distributions of (x, y) pairs in some models.
They depend on 5 parameters: the mean and variance of the marginal distributions of x and y, and the
correlation coefficient between x and y. Observed data can again be depicted with scatter-plots, but in this
case both coordinates are random. However, if we condition on either the x values or the y values, then the
resulting model is mathematically equivalent to a measurement error model, and the maximum likelihood
estimators can be found using horizontal and vertical regression.

In this case, the decision of which variable to regard as given is entirely arbitrary.

In the context of both models discussed above, orthogonal regression can be viewed as an alternative
method that is symmetric in its treatment of the variables and therefore more mathematically appealing. It
is generally regarded as being significantly less tractable than horizontal or vertical regression, but, as we
show in the next section, at least in the two-dimensional case it is possible to give a treatment that is no
more involved than the usual derivations of least squares lines one sees in calculus and statistics courses.

Orthogonal regression is also known as Deming regression, after H.W. Deming who wrote about the
problem in the 1940s, but the roots of the problem and its solution date back to the late 19th century. See,
for example, [3]. For an exposition similar in spirit to this one, but using somewhat different methods, see
[2].

In section 2 we discuss orthogonal regression, and in section 3 we provide some examples to illustrate
the results of section 2. In section 4 we discuss absolute value regression, in which distances replace squared
distances.

It is a pleasure to thank Vincent Fatica for some interesting conversations on the subject of this paper. In
particular, Vince suggested the idea for the Park Service problem stated above, and provided the argument
to handle the annoying special case of Theorem 4.1. I also wish to thank Thomas John for pointing out
reference [3].

2 Results

A convenient parametrization of the set of affine linear functions on R2 is given by

L(x, y) = cos θx+ sin θy + λ, θ ∈ [0, 2π), λ ∈ R.

We obtain all lines in the plane as the zero sets of affine functions. In what follows we will abuse notation
by identifying lines with the affine functions that vanish on them.

The orthogonal distance d from a given point x0 = (x0, y0) to L is

d2 = L(x0, y0)2 = | cos θx0 + sin θy0 + λ|2.

To see this, note that the point x1 = (−λ cos θ,−λ sin θ) lies on L, and then compute the component of
x0 − x1 in the direction of the unit normal – the vector with components (cos θ, sin θ).

Now suppose we are given a scatter-plot of n points (xi, yi), i = 1, 2, . . . , n, and we are to find the values
of θ and λ that minimize the sum of squared orthogonal residuals given by

R2
o(L) =

n∑
j=1

(cos θxj + sin θyj + λ)2.

Setting
∂R2

o

∂λ = 0 we obtain that L(x̄, ȳ) = 0, i.e., the minimizing line passes through the centroid, as in
horizontal and vertical regression. (Here x̄ denotes the arithmetic mean of the x-coordinates and ȳ denotes
the arithmetic mean of the y-coordinates.) It is convenient, then, to put the origin at the centroid and
minimize

R2
o(L) =

n∑
j=1

(cos θxj + sin θyj)
2,
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over θ ∈ [0, 2π). A little manipulation shows that the normal equation
∂R2

o

∂θ = 0 can be rewritten as

(2.1)
1

2
tan 2θ =

SS(xy)

SS(x)− SS(y)
,

at least when SS(x) 6= SS(y). Here we use the standard notations

SS(x) =

n∑
j=1

(xj − x̄)2, SS(y) =

n∑
j=1

(yj − ȳ)2, SS(xy) =

n∑
j=1

(xj − x̄)(yj − ȳ)

from Statistics.
It is important to note here that R2

o has both a maximum and a minimum value if we restrict to lines
that pass through the centroid. This is in contrast to the usual quantities R2

v (R2
h) from vertical (horizontal)

regression, where nearly vertical (horizontal) lines lead to unbounded values. In the case of orthogonal
regression, it is clear that R2

o cannot exceed the square of the diameter of the scatter-plot.
If S(xy) = 0 then we have

R2
o(L) = cos2 θSS(x) + sin2 θSS(y).

If SS(x) = SS(y) also, then Ro is constant and there is no unique minimum. If SS(x) < SS(y) then the
minimum occurs for θ = 0 and π, and the maximum occurs for θ = π

2 and 3π
2 . If SS(x) > SS(y) then the

maximum occurs for θ = 0 and π, and the minimum occurs for θ = π
2 and 3π

2 .
If SS(xy) 6= 0 and SS(x) = SS(y), then we may interpret (2.1) as yielding solutions θ = π

4 ,
3π
4 ,

5π
4 , and

7π
4 . Thus, in all cases where SS(xy) 6= 0, there are exactly 4 solutions in [0, 2π) that differ by multiples of
π
2 . Pairs that differ by π describe the same line. The minimum line is the one whose slope has the same sign
as SS(xy). The maximum line is always perpendicular to the minimum line. (The latter fact is intuitive on
geometric grounds, without being completely obvious.)

Orthogonal regression “outperforms” both vertical and horizontal regression in the sense that if Lo, Lv,
and Lh denote the respective minimum lines, then

(2.2) R2
o(Lo) ≤

1

2
R2
v(Lv) +

1

2
R2
h(Lh).

To see this, note that neither the horizontal nor the vertical distances from a point to a line can be less than
the orthogonal distance. Thus we have that R2

o(L) ≤ R2
v(L) and R2

o(L) ≤ R2
h(L) for any test line L. It

follows that

R2
o(Lo) ≤ R2

o(Lv) ∧R2
o(Lh) ≤ 1

2
R2
v(Lv) +

1

2
R2
h(Lh).

It is perhaps worth noting that a much stronger inequality holds for any given test line:

(2.3) R2
o(L) ≤ 1

4
R2
v(L) +

1

4
R2
h(L).

This follows from some elementary geometry: the squared distance from vertex to hypotenuse in a right
triangle is equal to half the harmonic mean of the squares on the legs. This, in turn, cannot exceed half the
arithmetic mean of the squares on the legs, and the desired inequality follows by summing these inequalities
over points in the scatter-plot.

Plane-geometric results often assume their most elegant form when expressed in terms of complex num-
bers. Let w be a non-zero complex number. Then the set of z ∈ C such that R(w̄z) = 0 is a line through
the origin. We shall call this the line determined by w.

Theorem 2.1. Let (xj , yj), j = 1, 2, . . . , n be points in the plane having the origin as centroid, and w be
a non-zero complex number. Put zj = xj + iyj . Then the line determined by w is extremal for orthogonal
regression if and only if

I(w̄2
n∑
j=1

z2j ) = 0.
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The proof is a straightforward verification using (2.1). (The centroid is assumed to lie at the origin for
convenience only. In general one needs to subtract the arithmetic mean of the zj from both w and each of
the zj .)

3 Examples

In this section we provide 3 examples to illustrate the foregoing.

Example 1 The collection of 3 points with coordinates (-2,-1), (1,-1), and (1,2) has centroid at the
origin. For this arrangement, Lo is the line through the origin of slope 1; and Lv and Lh are, respectively,
the lines through the origin with slope 1/2 and with slope 2. We have R2

o(Lo) = 3, while both R2
v(Lv) and

R2
h(Lh) are equal to 4.5. Also, R2

v(Lo) and R2
h(Lo) both equal 6, showing that equality can hold in (2.3).

Example 2 The 4 corners of the unit square also have centroid at the origin. In this case SS(xy) = 0
and SS(x) = SS(y) = 4. All lines L through the origin have R2

o(L) = 4, so in this case there is no unique
minimizing Lo. Also, Lv is horizontal and Lh is vertical, with R2

v(Lv) = R2
h(Lh) = 4, showing that equality

can hold in (2.2).

Example 3 ([1], Example 14.3.9) A survey of agricultural yield against amount of a pest allowed (the
latter can be controlled by crop treatment) gave the data in the following table, where xi is the pest rate
and yi is the crop yield:

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 8 6 11 22 14 17 18 24 19 23 26 40
yi 59 58 56 53 50 45 43 42 39 38 30 27

In this example, Lv has slope-intercept equation y = −1.013x+ 64.247, Lh has equation y = −1.306x+
69.805, and Lo has equation y = −1.172x+ 67.264.

4 Absolute Value (AV) Regression

In absolute value regression, also known as L1 regression, residuals are obtained by adding distances (hor-
izontal, vertical, or orthogonal) rather than squared distances. This type of regression is more natural for
the Park Service problem than are the forms of regression discussed above.

As before, we take as given a set of points (xi, yi), i = 1, 2, . . . n, which we shall call the configuration. In
vertical AV regression we seek to minimize the residual sum, given by

Rv =

n∑
j=1

|yj −mxj − b|,

over all possible lines L having slope-intercept equation y = mx+ b. In the case of orthogonal AV regression,
the summands are replaced by the (orthogonal) distances from the points to the test line. This quantity is
denoted Ro.

Theorem 4.1. If n ≥ 2 then in all 3 cases of AV regression (vertical, horizontal, and orthogonal) there is
an extremal line passing through two distinct points of the configuration.

This result provides an effective procedure for finding a best-fit line: simply try all possible lines through
pairs of points in the configuration and select the one that gives the smallest residual sum. Given the speed
of today’s computers, this procedure is even practical for problems of modest size.
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Theorem 4.1 is a well-known “folklore” result, at least in the case of vertical regression, but some proof
sketches we have seen in the literature miss (or at least fail to mention) one annoying detail. Accordingly, it
seems desirable to give a proof here.

Consider first the case of vertical AV regression. Let L be a line that avoids all points in the configuration.
We shall argue that L either does not minimize Rv, or can be replaced by another line with the same value
of Rv that does go through some point in the configuration.

Since no point lies on L, all points can be classified as belonging to one of two groups: group (I) - points
lying above L, i.e. (xj , yj) for which yj > mxj + b; and group (II) - points lying below L. If more than half
of the points belong to group I, then translating the line vertically, i.e., in the direction of the positive y-axis,
decreases Rv until a point of the configuration is encountered. Similarly, if more than half of the points
belong to group II, then a better line can be obtained by translating L downward. Finally, if the number of
points in the two groups is equal, L can be translated either up or down without changing the value of Rv
until some point of the configuration is encountered.

In any case, L can be replaced by a line going through at least one point of the configuration and that
has a value of Rv that is no larger than the value L had itself. Accordingly, we may assume that L passes
through some point of the configuration. Without loss of generality, that point is (x1, y1).

Next, we repeat the argument, but with rotation about (x1, y1) in place of vertical translation. Assume
that L does not pass through any other point of the configuration. Let θ be the angle L makes at (x1, y1)
with the horizontal.

A straightforward, but somewhat tedious, calculation shows that

(4.1) Rv =

n∑
j=1

|yj − y1| − (SI − SII) tan θ,

where SI is the sum of |xj − x1| over points in group I, and SII is the sum over points in group II. A
differential change dθ in the inclination of L that does not cause the line to encounter any other point of the
configuration produces a differential change in Rv of −(SI − SII) sec2 θ dθ. Thus, if SI 6= SII , the sign of dθ
can be chosen so as to lead to a smaller value of Rv for the rotated line. On the other hand, if SI = SII ,
then the value of Rv is independent of θ, and L can be rotated until some other point of the configuration
is encountered without changing the value of Rv. See (4.1).

Thus, in any case, we can replace L by a line - produced by rotation around (x1, y1) - that goes through
a second point of the configuration, and that has a value of Rv that is no larger than the value L had itself.

The case of horizontal AV regression is similar.
Finally, consider a best-fit line L for orthogonal AV regression, and let R be the value of Ro for this

line. Rotate the coordinate system about the origin until the line L becomes horizontal. Since rotations
preserve distance, the resulting horizontal line is necessarily a best-fit line for the rotated configuration under
orthogonal AV regression. It also necessarily a best fit line for the rotated configuration under vertical AV
regression, since the minimum value for Rv cannot be less than R. It may be that this line does not go
through two points of the configuration, but if so, it can be replaced by another having the same value of
Rv = R, and that does go through two points. But for this line we must have Ro = Rv = R, since Ro ≤ Rv
for any line. (Indeed, the latter line must also be horizontal, in addition to passing through two points of
the configuration.) Applying the inverse rotation transforms this line into one that has a value of Ro that is
equal to R, and that goes through two points of the original configuration.
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